login
A201976
Number of n X 3 0..3 arrays with rows and columns lexicographically nondecreasing read forwards and nonincreasing read backwards.
1
4, 72, 1372, 9260, 38112, 117744, 301612, 676792, 1375740, 2589832, 4584684, 7717252, 12454712, 19395120, 29289852, 43067824, 61861492, 87034632, 120211900, 163310172, 218571664, 288598832, 376391052, 485383080, 619485292, 783125704
OFFSET
1,1
COMMENTS
Column 3 of A201981.
LINKS
FORMULA
Empirical: a(n) = (89/36)*n^6 + (19/12)*n^5 + (215/36)*n^4 - (541/4)*n^3 + (3524/9)*n^2 - (1363/3)*n + 192.
Conjectures from Colin Barker, May 25 2018: (Start)
G.f.: 4*x*(1 + 11*x + 238*x^2 + 257*x^3 - 69*x^4 - 41*x^5 + 48*x^6) / (1 - x)^7.
a(n) = 7*a(n-1) - 21*a(n-2) + 35*a(n-3) - 35*a(n-4) + 21*a(n-5) - 7*a(n-6) + a(n-7) for n>7.
(End)
EXAMPLE
Some solutions for n=5.
..0..1..3....1..2..3....0..2..3....1..1..3....0..2..3....0..3..3....1..1..3
..2..0..3....2..2..2....1..3..2....1..1..3....1..2..1....2..0..3....1..3..2
..2..3..2....3..2..1....2..1..2....1..2..0....2..1..0....2..0..3....2..1..2
..3..1..1....3..2..1....2..2..0....2..1..0....3..0..0....3..1..2....3..3..0
..3..2..0....3..2..1....2..2..0....3..0..0....3..0..0....3..3..0....3..3..0
CROSSREFS
Cf. A201981.
Sequence in context: A203073 A231033 A307358 * A328426 A176901 A304316
KEYWORD
nonn
AUTHOR
R. H. Hardin, Dec 07 2011
STATUS
approved