The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Please make a donation to keep the OEIS running. We are now in our 56th year. In the past year we added 10000 new sequences and reached almost 9000 citations (which often say "discovered thanks to the OEIS"). Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A201953 A diagonal of irregular triangle A201949. 3

%I

%S 1,3,15,90,629,5019,45030,448776,4919321,58825415,762089899,

%T 10633219662,158974192987,2535484008225,42970371055268,

%U 771162539117408,14609924404202130,291386317037291622,6102681801481066642,133910606028043519500,3072216586896101950757

%N A diagonal of irregular triangle A201949.

%C G.f. of row n in triangle A201949 equals Product_{k=0..n-1} (1 + k*x + x^2).

%F E.g.f.: Sum_{n>=0} log(1 - x)^(2*n+2) / (n!*(n+2)!). - _Paul D. Hanna_, Feb 25 2019

%F a(n) = [x^(n-2)] Product_{k=0..n-1} (1 + k*x + x^2).

%e E.g.f.: A(x) = x^2/2! + 3*x^3/3! + 15*x^4/4! + 90*x^5/5! + 629*x^6/6! + 5019*x^7/7! + 45030*x^8/8! + 448776*x^9/9! + 4919321*x^10/10! + ...

%e Triangle A201949 begins:

%e [1],

%e [1, 0, 1],

%e [(1), 1, 2, 1, 1],

%e [1,(3), 5, 6, 5, 3, 1],

%e [1, 6, (15), 24, 28, 24, 15, 6, 1],

%e [1, 10, 40, (90), 139, 160, 139, 90, 40, 10, 1],

%e [1, 15, 91, 300, (629), 945, 1078, 945, 629, 300, 91, 15, 1], ...

%e where coefficients in parenthesis form the initial terms of this sequence.

%o (PARI) {a(n) = polcoeff( prod(j=0, n-1, 1 + j*x + x^2), n-2)}

%o for(n=2,30,print1(a(n),", "))

%Y Cf. A201949, A201950, A201951, A201952.

%K nonn

%O 2,2

%A _Paul D. Hanna_, Dec 06 2011

%E Offset changed to 2 to agree with the e.g.f. - _Paul D. Hanna_, Feb 25 2019

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 4 11:51 EST 2020. Contains 338923 sequences. (Running on oeis4.)