login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A201906 Decimal expansion of the x nearest 0 that satisfies x^2+4x+2=e^x. 4
3, 5, 6, 8, 7, 4, 9, 1, 9, 1, 3, 8, 6, 3, 6, 4, 8, 5, 6, 5, 0, 6, 6, 7, 0, 5, 8, 7, 5, 9, 9, 1, 2, 4, 4, 0, 9, 5, 9, 9, 2, 0, 0, 5, 2, 6, 2, 0, 8, 0, 4, 2, 0, 9, 9, 6, 8, 1, 8, 4, 5, 7, 7, 9, 2, 0, 7, 4, 7, 0, 6, 1, 9, 1, 8, 6, 6, 5, 3, 2, 2, 5, 4, 6, 7, 4, 0, 0, 6, 5, 0, 2, 7, 5, 6, 9, 8, 0, 0 (list; constant; graph; refs; listen; history; text; internal format)
OFFSET

0,1

COMMENTS

See A201741 for a guide to related sequences.  The Mathematica program includes a graph.

LINKS

Table of n, a(n) for n=0..98.

EXAMPLE

least:  -3.425667410202877373265626064725816697827357...

nearest to 0:  -0.35687491913863648565066705875991244...

greatest:  3.2349232177760663670327961327304430448478...

MATHEMATICA

a = 1; b = 4; c = 2;

f[x_] := a*x^2 + b*x + c; g[x_] := E^x

Plot[{f[x], g[x]}, {x, -4, 3.3}, {AxesOrigin -> {0, 0}}]

r = x /. FindRoot[f[x] == g[x], {x, -3.5, -3.4}, WorkingPrecision -> 110]

RealDigits[r]     (* A201905 *)

r = x /. FindRoot[f[x] == g[x], {x, -.36, -.35}, WorkingPrecision -> 110]

RealDigits[r]     (* A201906 *)

r = x /. FindRoot[f[x] == g[x], {x, 3.2, 3.3}, WorkingPrecision -> 110]

RealDigits[r]     (* A201907 *)

CROSSREFS

Cf. A201741.

Sequence in context: A145736 A188195 A021741 * A267158 A161529 A133043

Adjacent sequences:  A201903 A201904 A201905 * A201907 A201908 A201909

KEYWORD

nonn,cons

AUTHOR

Clark Kimberling, Dec 06 2011

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified January 27 17:58 EST 2020. Contains 331296 sequences. (Running on oeis4.)