This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A201896 Decimal expansion of the greatest x satisfying x^2+3x+1=e^x. 1
 2, 8, 9, 3, 1, 1, 6, 4, 3, 0, 9, 2, 5, 2, 7, 1, 2, 2, 0, 3, 1, 5, 5, 3, 4, 9, 3, 1, 3, 4, 9, 5, 3, 0, 8, 8, 5, 3, 0, 4, 0, 7, 9, 0, 9, 1, 5, 4, 6, 9, 7, 7, 4, 0, 1, 8, 2, 1, 6, 3, 4, 9, 2, 8, 1, 6, 6, 5, 5, 3, 6, 6, 0, 7, 8, 3, 3, 7, 3, 0, 5, 1, 9, 0, 8, 9, 2, 1, 0, 2, 3, 8, 8, 7, 1, 7, 3, 5, 1 (list; constant; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS See A201741 for a guide to related sequences.  The Mathematica program includes a graph. LINKS EXAMPLE least:  -2.649219887767292965348496137953408152796... greatest:  2.8931164309252712203155349313495308853... MATHEMATICA a = 1; b = 3; c = 1; f[x_] := a*x^2 + b*x + c; g[x_] := E^x Plot[{f[x], g[x]}, {x, -4, 4}, {AxesOrigin -> {0, 0}}] r = x /. FindRoot[f[x] == g[x], {x, -2.7, -2.6}, WorkingPrecision -> 110] RealDigits[r]     (* A201895 *) r = x /. FindRoot[f[x] == g[x], {x, 2.9, 3.0}, WorkingPrecision -> 110] RealDigits[r]     (* A201986 *)  (* NOTE 3 zeros *) CROSSREFS Cf. A201741. Sequence in context: A200502 A011062 A155922 * A154859 A179377 A199274 Adjacent sequences:  A201893 A201894 A201895 * A201897 A201898 A201899 KEYWORD nonn,cons AUTHOR Clark Kimberling, Dec 06 2011 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Puzzles | Hot | Classics
Recent Additions | More pages | Superseeker | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .