login
Decimal expansion of the number x satisfying x^2+2x+2=e^x.
2

%I #8 Feb 07 2025 16:44:07

%S 2,6,7,4,0,6,0,3,1,3,7,2,3,5,6,0,3,1,7,9,1,3,4,5,7,2,6,4,5,9,1,6,9,4,

%T 9,8,9,6,2,2,7,8,7,7,9,5,0,2,7,8,2,2,2,7,8,0,8,7,7,1,8,8,1,8,1,3,7,5,

%U 6,5,5,4,9,1,6,9,9,1,8,5,7,6,4,4,5,2,1,7,4,9,5,3,8,3,5,8,2,4,7

%N Decimal expansion of the number x satisfying x^2+2x+2=e^x.

%C See A201741 for a guide to related sequences. The Mathematica program includes a graph.

%H <a href="/index/Tra#transcendental">Index entries for transcendental numbers</a>.

%e x=2.674060313723560317913457264591694989622787...

%t a = 1; b = 2; c = 2;

%t f[x_] := a*x^2 + b*x + c; g[x_] := E^x

%t Plot[{f[x], g[x]}, {x, -2, 3}, {AxesOrigin -> {0, 0}}]

%t r = x /. FindRoot[f[x] == g[x], {x, 2.6, 2.7}, WorkingPrecision -> 110]

%t RealDigits[r] (* A201891 *)

%Y Cf. A201741.

%K nonn,cons

%O 1,1

%A _Clark Kimberling_, Dec 06 2011