login
A201880
Numbers n such that sigma_2(n) - n^2 is prime.
1
4, 18, 21, 33, 39, 72, 93, 99, 100, 159, 171, 177, 189, 207, 213, 231, 245, 249, 261, 275, 291, 297, 303, 333, 338, 357, 369, 381, 399, 400, 453, 471, 475, 477, 484, 495, 537, 539, 543, 561, 609, 633, 648, 657, 669, 681, 711, 717, 783, 801, 833, 861, 909, 927
OFFSET
1,1
COMMENTS
Numbers n such that sum of the squares of the proper (or aliquot) divisors of n is a prime number.
LINKS
FORMULA
{n: A067558(n) in A000040} - R. J. Mathar, Dec 07 2011
EXAMPLE
a(3)=21 because the aliquot divisors of 21 are 1, 3, 7, the sum of whose squares is 1^2 + 3^2 + 7^2 = 59, prime.
MAPLE
A067558 := proc(n)
numtheory[sigma][2](n)-n^2 ;
end proc:
isA201880 := proc(n)
isprime(A067558(n)) ;
end proc:
for n from 1 to 1000 do
if isA201880(n) then
printf("%d, ", n);
end if;
end do: # R. J. Mathar, Dec 07 2011
MATHEMATICA
Select[Range[400], PrimeQ[DivisorSigma[2, #]-#^2]&]
PROG
(PARI) is(n)=isprime(sigma(n, 2)-n^2) \\ Charles R Greathouse IV, Dec 06 2011
CROSSREFS
KEYWORD
nonn
AUTHOR
Michel Lagneau, Dec 06 2011
STATUS
approved