%I #19 Sep 08 2022 08:46:01
%S 0,1,2,3,5,7,9,10,12,13,15,16,19,20,21,23,26,27,28,29,30,31,36,41,43,
%T 47,49,52,54,56,58,61,62,65,68,69,70,72,73,75,79,80,83,87,90,92,97,98,
%U 100,103,104,105,106,112,113,114,118,124,125
%N Numbers k such that 90*k + 11 is prime.
%C This sequence was generated by adding 12 Fibonacci-like sequences. Looking at 90*k+11 modulo 9 and modulo 10 we see that all entries of A142317 have digital root 2 and last digit 1. (Reverting the process is an application of the Chinese remainder theorem)
%H Vincenzo Librandi, <a href="/A201804/b201804.txt">Table of n, a(n) for n = 1..10000</a>
%t Select[Range[0,40000],PrimeQ[90 #+11]&] (* _Vincenzo Librandi_, Dec 11 2011 *)
%o (Magma) [n: n in [0..200] | IsPrime(90*n+11)]; // _Vincenzo Librandi_, Dec 11 2011
%Y Cf. A181732, A198382, A195993, A196000, A196007, A201739, A201734.
%K nonn,easy
%O 1,3
%A _J. W. Helkenberg_, Dec 05 2011
%E a(24)-a(59) from _Vincenzo Librandi_, Dec 11 2011