%I
%S 2,8,1,7,8,4,7,6,9,4,4,1,6,5,7,3,6,8,9,3,7,7,2,7,4,0,9,6,5,0,4,0,6,4,
%T 1,2,8,2,2,8,3,8,6,2,2,3,4,1,7,1,6,8,5,3,9,0,6,1,7,6,2,5,2,5,8,9,3,5,
%U 4,6,5,2,8,5,9,3,6,1,8,9,9,3,3,0,9,8,4,5,7,4,8,7,6,0,5,6,4,5,4
%N Decimal expansion of the least x satisfying x^2+8=e^x.
%C See A201741 for a guide to related sequences. The Mathematica program includes a graph.
%e least: 2.8178476944165736893772740965040641282283...
%e greatest: 1.65826072045249887879638437964645256434...
%t a = 1; b = 0; c = 8;
%t f[x_] := a*x^2 + b*x + c; g[x_] := E^x
%t Plot[{f[x], g[x]}, {x, 3, 3}, {AxesOrigin > {0, 0}}]
%t r = x /. FindRoot[f[x] == g[x], {x, 2.8, 2.9}, WorkingPrecision > 110]
%t RealDigits[r] (* A201763 *)
%t r = x /. FindRoot[f[x] == g[x], {x, 1.6, 1.7}, WorkingPrecision > 110]
%t RealDigits[r] (* A201764 *)
%Y Cf. A201741.
%K nonn,cons
%O 1,1
%A _Clark Kimberling_, Dec 05 2011
