login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A201762 Decimal expansion of the greatest x satisfying -x^2+7=e^x. 3
1, 5, 3, 5, 3, 1, 7, 6, 0, 2, 3, 4, 3, 7, 6, 5, 8, 6, 2, 0, 2, 6, 9, 2, 3, 7, 2, 4, 3, 9, 7, 2, 0, 6, 2, 0, 8, 6, 1, 2, 5, 4, 7, 9, 0, 6, 2, 8, 6, 4, 0, 2, 5, 4, 1, 5, 9, 2, 1, 2, 9, 5, 3, 6, 3, 0, 4, 2, 8, 4, 8, 3, 4, 9, 4, 2, 2, 2, 5, 2, 8, 8, 1, 2, 4, 3, 4, 1, 3, 6, 5, 4, 7, 9, 0, 2, 9, 3, 0 (list; constant; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

See A201741 for a guide to related sequences.  The Mathematica program includes a graph.

LINKS

Table of n, a(n) for n=1..99.

EXAMPLE

least:  -2.6321235606142229538753076713383129343383...

greatest:  1.53531760234376586202692372439720620861...

MATHEMATICA

a = -1; b = 0; c = 7;

f[x_] := a*x^2 + b*x + c; g[x_] := E^x

Plot[{f[x], g[x]}, {x, -3, 3}, {AxesOrigin -> {0, 0}}]

r = x /. FindRoot[f[x] == g[x], {x, -2.7, -2.6}, WorkingPrecision -> 110]

RealDigits[r]    (* A201761 *)

r = x /. FindRoot[f[x] == g[x], {x, 1.5, 1.6}, WorkingPrecision -> 110]

RealDigits[r]    (* A201762 *)

CROSSREFS

Cf. A201741.

Sequence in context: A333236 A270915 A319461 * A153386 A112920 A109364

Adjacent sequences:  A201759 A201760 A201761 * A201763 A201764 A201765

KEYWORD

nonn,cons

AUTHOR

Clark Kimberling, Dec 05 2011

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 1 12:52 EDT 2020. Contains 334762 sequences. (Running on oeis4.)