This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A201759 Decimal expansion of the least x satisfying -x^2+6=e^x. 3
 2, 4, 3, 1, 4, 7, 9, 6, 5, 9, 7, 2, 3, 0, 3, 6, 0, 3, 9, 7, 3, 6, 5, 3, 9, 0, 1, 4, 0, 8, 3, 4, 1, 5, 0, 8, 2, 9, 7, 7, 3, 1, 3, 9, 5, 9, 0, 5, 2, 2, 4, 2, 9, 2, 8, 2, 7, 6, 1, 3, 7, 9, 7, 2, 4, 5, 3, 9, 7, 8, 0, 9, 6, 9, 6, 7, 1, 1, 7, 9, 7, 8, 4, 1, 9, 5, 9, 5, 3, 3, 0, 6, 6, 1, 2, 8, 6, 7, 1 (list; constant; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS See A201741 for a guide to related sequences.  The Mathematica program includes a graph. LINKS EXAMPLE least:  -2.431479659723036039736539014083415082... greatest:  1.3977805354241768741646854746062333... MATHEMATICA a = -1; b = 0; c = 6; f[x_] := a*x^2 + b*x + c; g[x_] := E^x Plot[{f[x], g[x]}, {x, -3, 3}, {AxesOrigin -> {0, 0}}] r = x /. FindRoot[f[x] == g[x], {x, -2.5, -2.4}, WorkingPrecision -> 110] RealDigits[r]    (* A201759 *) r = x /. FindRoot[f[x] == g[x], {x, 1.3, 1.4}, WorkingPrecision -> 110] RealDigits[r]    (* A201760 *) CROSSREFS Cf. A201741. Sequence in context: A125941 A071284 A104753 * A011170 A109158 A049245 Adjacent sequences:  A201756 A201757 A201758 * A201760 A201761 A201762 KEYWORD nonn,cons AUTHOR Clark Kimberling, Dec 05 2011 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Puzzles | Hot | Classics
Recent Additions | More pages | Superseeker | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .