login
A201757
Decimal expansion of the least x satisfying -x^2+5=e^x.
3
2, 2, 1, 1, 4, 3, 7, 7, 5, 8, 8, 4, 2, 0, 4, 2, 3, 4, 4, 8, 9, 2, 4, 2, 3, 2, 9, 2, 3, 3, 0, 1, 5, 2, 7, 2, 5, 9, 6, 5, 5, 7, 2, 8, 3, 4, 7, 9, 2, 1, 7, 1, 4, 6, 0, 9, 5, 3, 5, 5, 0, 3, 4, 1, 6, 9, 6, 2, 7, 6, 4, 8, 1, 4, 9, 5, 9, 0, 3, 6, 8, 2, 2, 3, 0, 1, 2, 5, 2, 3, 6, 1, 8, 3, 6, 2, 2, 7, 8
OFFSET
1,1
COMMENTS
See A201741 for a guide to related sequences. The Mathematica program includes a graph.
EXAMPLE
least: -2.21143775884204234489242329233015272...
greatest: 1.241142758399597693572251244897788...
MATHEMATICA
a = -1; b = 0; c = 5;
f[x_] := a*x^2 + b*x + c; g[x_] := E^x
Plot[{f[x], g[x]}, {x, -3, 3}, {AxesOrigin -> {0, 0}}]
r = x /. FindRoot[f[x] == g[x], {x, -2.3, -2.2}, WorkingPrecision -> 110]
RealDigits[r] (* A201757 *)
r = x /. FindRoot[f[x] == g[x], {x, 1.2, 1.3}, WorkingPrecision -> 110]
RealDigits[r] (* A201758 *)
CROSSREFS
Cf. A201741.
Sequence in context: A123566 A377086 A279863 * A053390 A140643 A331409
KEYWORD
nonn,cons
AUTHOR
Clark Kimberling, Dec 05 2011
STATUS
approved