login
A201756
Decimal expansion of the greatest x satisfying -x^2+4=e^x.
3
1, 0, 5, 8, 0, 0, 6, 4, 0, 1, 0, 9, 0, 6, 3, 6, 3, 0, 8, 6, 2, 1, 3, 8, 7, 4, 4, 6, 1, 2, 3, 1, 6, 1, 3, 5, 1, 4, 3, 2, 6, 8, 2, 8, 8, 6, 3, 5, 8, 9, 4, 8, 6, 6, 0, 5, 4, 4, 5, 9, 4, 4, 3, 0, 2, 2, 7, 5, 3, 2, 7, 6, 6, 3, 5, 8, 3, 0, 9, 3, 6, 6, 4, 1, 6, 0, 6, 8, 5, 0, 9, 8, 0, 5, 5, 8, 0, 0, 9
OFFSET
1,3
COMMENTS
See A201741 for a guide to related sequences. The Mathematica program includes a graph.
EXAMPLE
least: -1.96463559748886450762265969211097...
greatest: 1.058006401090636308621387446123...
MATHEMATICA
a = -1; b = 0; c = 4;
f[x_] := a*x^2 + b*x + c; g[x_] := E^x
Plot[{f[x], g[x]}, {x, -3, 2}, {AxesOrigin -> {0, 0}}]
r = x /. FindRoot[f[x] == g[x], {x, -2.0, -1.9}, WorkingPrecision -> 110]
RealDigits[r] (* A201755 *)
r = x /. FindRoot[f[x] == g[x], {x, 1.0, 1.1}, WorkingPrecision -> 110]
RealDigits[r] (* A201756 *)
CROSSREFS
Cf. A201741.
Sequence in context: A377592 A198875 A249403 * A242674 A154052 A181439
KEYWORD
nonn,cons
AUTHOR
Clark Kimberling, Dec 05 2011
STATUS
approved