login
A201753
Decimal expansion of the least x satisfying -x^2+3=e^x.
3
1, 6, 7, 7, 2, 3, 2, 7, 0, 8, 5, 3, 2, 5, 3, 7, 9, 9, 8, 8, 9, 2, 7, 0, 1, 0, 1, 1, 7, 7, 9, 4, 2, 1, 7, 6, 9, 4, 5, 1, 2, 8, 9, 8, 5, 8, 1, 4, 2, 5, 6, 2, 3, 3, 9, 0, 2, 0, 0, 5, 9, 7, 0, 7, 0, 3, 6, 6, 6, 4, 7, 9, 1, 7, 1, 8, 0, 7, 4, 4, 3, 2, 0, 2, 8, 0, 5, 2, 2, 3, 4, 1, 2, 6, 7, 0, 2, 6, 0
OFFSET
1,2
COMMENTS
See A201741 for a guide to related sequences. The Mathematica program includes a graph.
EXAMPLE
least: -1.677232708532537998892701011779421...
greatest: 0.8344868653087587860911016801273...
MATHEMATICA
a = -1; b = 0; c = 3;
f[x_] := a*x^2 + b*x + c; g[x_] := E^x
Plot[{f[x], g[x]}, {x, -2, 1}, {AxesOrigin -> {0, 0}}]
r = x /. FindRoot[f[x] == g[x], {x, -1.7, -1.6}, WorkingPrecision -> 110]
RealDigits[r] (* A201753 *)
r = x /. FindRoot[f[x] == g[x], {x, .8, .9}, WorkingPrecision -> 110]
RealDigits[r] (* A201754 *)
CROSSREFS
Cf. A201741.
Sequence in context: A139726 A200095 A359106 * A084256 A197692 A322415
KEYWORD
nonn,cons
AUTHOR
Clark Kimberling, Dec 05 2011
STATUS
approved