login
A201743
Decimal expansion of the number x satisfying x^2+4=e^x.
2
2, 1, 5, 8, 7, 2, 6, 0, 6, 4, 4, 8, 1, 2, 2, 4, 6, 2, 4, 1, 4, 0, 2, 4, 0, 7, 5, 4, 8, 1, 3, 8, 5, 6, 7, 1, 7, 7, 5, 5, 9, 0, 7, 4, 1, 5, 7, 7, 7, 6, 7, 1, 4, 4, 8, 1, 8, 8, 9, 1, 8, 6, 8, 7, 0, 6, 0, 8, 7, 1, 9, 1, 2, 4, 9, 3, 2, 1, 3, 0, 0, 3, 1, 3, 3, 2, 4, 6, 9, 2, 4, 2, 5, 8, 6, 0, 0, 6, 4
OFFSET
1,1
COMMENTS
See A201741 for a guide to related sequences. The Mathematica program includes a graph.
EXAMPLE
x=2.1587260644812246241402407548138567177...
MATHEMATICA
a = 1; b = 0; c = 4;
f[x_] := a*x^2 + b*x + c; g[x_] := E^x
Plot[{f[x], g[x]}, {x, -3, 3}, {AxesOrigin -> {0, 0}}]
r = x /. FindRoot[f[x] == g[x], {x, 2.1, 2.2}, WorkingPrecision -> 110]
RealDigits[r] (* A201743 *)
CROSSREFS
Cf. A201741.
Sequence in context: A316293 A377363 A193180 * A167816 A316292 A222542
KEYWORD
nonn,cons
AUTHOR
Clark Kimberling, Dec 05 2011
STATUS
approved