OFFSET
1,2
COMMENTS
This sequence was generated by adding 12 Fibonacci-like sequences. Looking at the format 90n+29 modulo 9 and modulo 10 we see that all entries of A142327 have digital root 2 and last digit 9. (Reverting the process is an application of the Chinese remainder theorem.)
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 1..10000
FORMULA
a(n) = (A142327(n) - 29)/90.
MAPLE
for n from 0 to 240 do
p := 90*n+29 ;
if isprime(p) then
printf("%d, ", n) ;
end if;
end do: # R. J. Mathar, Dec 05 2011
MATHEMATICA
Select[Range[0, 400], PrimeQ[90 #+29]&] (* Vincenzo Librandi, Dec 11 2011 *)
PROG
(PARI) forstep(n=29, 1e4, 90, if(isprime(n), print1(n\90", "))) \\ Charles R Greathouse IV, Dec 05 2011
(Magma) [n: n in [0..200] | IsPrime(90*n+29)]; // Vincenzo Librandi, Dec 11 2011
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
J. W. Helkenberg, Dec 04 2011
STATUS
approved