login
The total number of components in (A011800) of all labeled forests on n nodes whose components are all paths.
2

%I #16 Mar 28 2023 09:54:24

%S 0,1,3,12,64,420,3246,28798,288072,3205044,39234340,523821936,

%T 7572221328,117792884872,1961516974704,34807390821960,655594811020096,

%U 13060711726818768,274358217793164912,6060159633360214144,140404595387426964480

%N The total number of components in (A011800) of all labeled forests on n nodes whose components are all paths.

%F E.g.f.: x*(2-x)*exp[x*(2-x)/(2-2x)]/(2-2x). - _R. J. Mathar_, Jun 27 2022

%F D-finite with recurrence 6*(n+1)*a(n) +2*(-6*n^2-19*n+35)*a(n-1) +2*(3*n^3+26*n^2-102*n+75)*a(n-2) -(n-2)*(29*n^2-102*n+85)*a(n-3) +(13*n-15)*(n-2)*(n-3)*a(n-4)=0. - _R. J. Mathar_, Jun 27 2022

%p A201720 := proc(n)

%p g := (2*x-x^2)*exp((2*x-x^2)/(2-2*x))/(2-2*x) ;

%p coeftayl(g,x=0,n) ;

%p %*n! ;

%p end proc:

%p seq(A201720(n),n=0..30) ; # _R. J. Mathar_, Jun 27 2022

%t D[Range[0, 20]! CoefficientList[ Series[Exp[y (2 x - x^2)/(2 - 2 x)], {x, 0, 20}], x], y] /. y -> 1

%Y Cf. A011800.

%K nonn

%O 0,3

%A _Geoffrey Critzer_, Dec 04 2011