login
A201719
Primes of the form x^2 + 2y^2 such that y^2 + 2x^2 is also prime.
1
11, 19, 43, 59, 67, 83, 107, 139, 163, 179, 211, 251, 307, 331, 419, 443, 467, 491, 563, 571, 587, 619, 643, 811, 883, 907, 947, 971, 1019, 1091, 1123, 1171, 1259, 1291, 1307, 1427, 1531, 1571, 1579, 1667, 1699, 1747, 1787, 1811, 1907, 1979, 1987, 2003, 2011
OFFSET
1,1
COMMENTS
All terms == 3 mod 8 (cf. A007520).
EXAMPLE
Corresponding pairs of primes:
(a(1),a(2))=(11,19): 11=3^2+2*1^2, 19=1^2+2*3^2
(a(3),a(4))=(43,59): 43=5^2+2*3^2, 59=3^2+2*5^2
(a(5),a(7))=(67,107): 67=7^2+2*3^2, 107=3^2+2*7^2.
MATHEMATICA
With[{nn=50}, Take[Union[Flatten[Select[{#[[1]]^2+2#[[2]]^2, 2#[[1]]^2+ #[[2]]^2}&/@Subsets[Range[nn], {2}], And@@PrimeQ[#]&]]], nn]] (* Harvey P. Dale, Sep 15 2013 *)
CROSSREFS
Cf. A154777.
Sequence in context: A275797 A376338 A294993 * A107201 A189888 A227930
KEYWORD
nonn
AUTHOR
Zak Seidov, Dec 04 2011
STATUS
approved