Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.
%I #9 Sep 12 2018 01:34:21
%S 3,1,2,0,6,2,2,9,9,3,0,8,6,9,1,8,8,0,5,1,4,1,2,7,3,4,2,4,6,2,3,0,6,6,
%T 0,0,2,1,7,0,0,3,5,6,2,4,5,2,7,7,9,7,3,7,1,1,0,9,8,7,8,5,9,1,2,2,8,1,
%U 0,3,9,7,7,4,6,4,5,3,7,4,0,0,1,4,8,8,0,6,3,0,8,4,4,1,1,7,5,1,1
%N Decimal expansion of greatest x satisfying 5*x^2 - 1 = csc(x) and 0<x<Pi.
%C See A201564 for a guide to related sequences. The Mathematica program includes a graph.
%H G. C. Greubel, <a href="/A201671/b201671.txt">Table of n, a(n) for n = 1..10000</a>
%e least: 0.711533888367151499246796307428212556772...
%e greatest: 3.120622993086918805141273424623066002...
%t a = 5; c = -1;
%t f[x_] := a*x^2 + c; g[x_] := Csc[x]
%t Plot[{f[x], g[x]}, {x, 0, Pi}, {AxesOrigin -> {0, 0}}]
%t r = x /. FindRoot[f[x] == g[x], {x, .7, .8}, WorkingPrecision -> 110]
%t RealDigits[r] (* A201670 *)
%t r = x /. FindRoot[f[x] == g[x], {x, 3.0, 3.14}, WorkingPrecision -> 110]
%t RealDigits[r] (* A201671 *)
%o (PARI) a=5; c=-1; solve(x=3, 3.14, a*x^2 + c - 1/sin(x)) \\ _G. C. Greubel_, Sep 11 2018
%Y Cf. A201564.
%K nonn,cons
%O 1,1
%A _Clark Kimberling_, Dec 04 2011