login
Decimal expansion of least x satisfying 4*x^2 - 1 = csc(x) and 0<x<Pi.
3

%I #12 Feb 07 2025 16:44:07

%S 7,7,8,4,7,6,7,7,7,2,7,7,5,9,4,2,3,1,2,9,0,0,3,5,2,7,9,9,8,6,7,2,6,8,

%T 7,7,9,8,6,1,2,4,8,6,5,6,2,6,2,4,6,1,1,5,6,8,0,0,6,2,0,9,6,5,7,7,6,3,

%U 2,2,1,7,5,3,8,6,6,8,9,4,8,6,1,4,6,8,3,7,2,9,9,1,2,4,5,4,7,3,4

%N Decimal expansion of least x satisfying 4*x^2 - 1 = csc(x) and 0<x<Pi.

%C See A201564 for a guide to related sequences. The Mathematica program includes a graph.

%H G. C. Greubel, <a href="/A201668/b201668.txt">Table of n, a(n) for n = 0..10000</a>

%H <a href="/index/Tra#transcendental">Index entries for transcendental numbers</a>.

%e least: 0.7784767772775942312900352799867268779861...

%e greatest: 3.1151461160403612671519315474503258920...

%t a = 4; c = -1;

%t f[x_] := a*x^2 + c; g[x_] := Csc[x]

%t Plot[{f[x], g[x]}, {x, 0, Pi}, {AxesOrigin -> {0, 0}}]

%t r = x /. FindRoot[f[x] == g[x], {x, .7, .8}, WorkingPrecision -> 110]

%t RealDigits[r] (* A201668 *)

%t r = x /. FindRoot[f[x] == g[x], {x, 3.0, 3.14}, WorkingPrecision -> 110]

%t RealDigits[r] (* A201669 *)

%o (PARI) a=4; c=-1; solve(x=0.5, 1, a*x^2 + c - 1/sin(x)) \\ _G. C. Greubel_, Sep 11 2018

%Y Cf. A201564.

%K nonn,cons

%O 0,1

%A _Clark Kimberling_, Dec 04 2011