login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

If the sum of the squares of 4 consecutive numbers is a triangular number t(u), then a(n) is its index u.
1

%I #17 Jun 14 2016 11:15:32

%S 35,83,1203,2835,40883,96323,1388835,3272163,47179523,111157235,

%T 1602714963,3776073843,54445129235,128275353443,1849531679043,

%U 4357585943235,62829631958243,148029646716563,2134357954901235,5028650402419923

%N If the sum of the squares of 4 consecutive numbers is a triangular number t(u), then a(n) is its index u.

%C Sum_{(e(n)+j)^2,j=0..3} = a(n)*(a(n)+1)/2=t(a(n)) give the Pell equation c(n)^2 - 32*d(n)^2 = 41 with 2*a(n) + 1 = c(n) and e(n) + 1.5 = d(n). e(n) = A201633(n).

%C In general, for the sum of the squares of k consecutive numbers, one get an analog sequence with k in {4, 5, 6, 7, 11, 15, 17, 19, 23,...}. It gives the Pell equation c(n)^2 - 8k*d(n)^2 = 4*binomial((k+1),3) + 1 with 2*a(n) + 1 = c(n) and e(n) + (k-1)/2 = d(n).

%H <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (1,34,-34,-1,1).

%F G.f.: (35*x+48*x^2-70*x^3+3*x^5)/((1-x)*(1-34*x^2+x^4)).

%F a(n+4) = 34*a(n+2) - a(n) + 16.

%F a(n+5) = a(n+4) + 34*a(n+3) - 34*a(n+2) - a(n+1) + a(n).

%F eigenvalues ej: {1,(3+2r),-(3+2r),(3-2r),-(3-2r)}.

%F a(n+1) = (k1*e1 + k2*e2^n + k3*e3^n + k4*e4^n + k5*e5^n)/4 for k1=-2; k2=50+35r; k3=21+15r; k4=50-35r; k5=21-15r, where r = sqrt(2).

%e For n=2: a(2)=83; t(83)=83*84/2=3486.

%e A201633(2)=e(2)=28; 28^2+29^2+30^2+31^2=3486.

%Y Cf. A201633, A218395.

%K nonn,easy

%O 1,1

%A _Paul Weisenhorn_, Jan 09 2013

%E Corrected by _R. J. Mathar_, Jun 14 2016