%I
%S 6,24,30,90,150,156,210,240,306,366,384,444,810,834,1086,1200,1326,
%T 2316,3876,4230,4350,8244,8880,9450,10686,10950,11784,12816,13554,
%U 15504,15576,16254,16506,16596,19446,19944,21516,38340,39990,41556,45786,47190,48246,59856
%N Record (maximal) gaps between prime triples (p, p+4, p+6).
%C Prime triples (p, p+4, p+6) are one of the two types of densest permissible constellations of 3 primes (A022004 and A022005). By the HardyLittlewood ktuple conjecture, average gaps between prime ktuples are O(log^k(p)), with k=3 for triples. If a gap is larger than any preceding gap, we call it a maximal gap, or a record gap. Maximal gaps may be significantly larger than average gaps; this sequence suggests that maximal gaps between triples are O(log^4(p)).
%C A201597 lists initial primes p in triples (p, p+4, p+6) preceding the maximal gaps. A233435 lists the corresponding primes p at the end of the maximal gaps.
%H Alexei Kourbatov, <a href="/A201596/b201596.txt">Table of n, a(n) for n = 1..79</a>
%H T. Forbes, <a href="http://anthony.d.forbes.googlepages.com/ktuplets.htm">Prime ktuplets</a>
%H G. H. Hardy and J. E. Littlewood, <a href="https://dx.doi.org/10.1007/BF02403921">Some problems of 'Partitio numerorum'; III: on the expression of a number as a sum of primes</a>, Acta Mathematica, Vol. 44, pp. 170, 1923.
%H Alexei Kourbatov, <a href="http://www.javascripter.net/math/primes/maximalgapsbetweenktuples.htm">Maximal gaps between prime ktuples</a>
%H A. Kourbatov, <a href="http://arxiv.org/abs/1301.2242">Maximal gaps between prime ktuples: a statistical approach</a>, arXiv preprint arXiv:1301.2242 [math.NT], 2013 and <a href="https://cs.uwaterloo.ca/journals/JIS/VOL16/Kourbatov/kourbatov3.html">J. Int. Seq. 16 (2013) #13.5.2</a>
%H Alexei Kourbatov, <a href="http://arxiv.org/abs/1309.4053">Tables of record gaps between prime constellations</a>, arXiv preprint arXiv:1309.4053 [math.NT], 2013.
%H Alexei Kourbatov, <a href="http://arxiv.org/abs/1401.6959">The distribution of maximal prime gaps in Cramer's probabilistic model of primes</a>, arXiv preprint arXiv:1401.6959 [math.NT], 2014.
%H Alexei Kourbatov and Marek Wolf, <a href="http://arxiv.org/abs/1901.03785">Predicting maximal gaps in sets of primes</a>, arXiv preprint arXiv:1901.03785 [math.NT], 2019.
%H Eric W. Weisstein, <a href="http://mathworld.wolfram.com/kTupleConjecture.html">kTuple Conjecture</a>
%F Gaps between prime triples (p, p+4, p+6) are smaller than 0.35*(log p)^4, where p is the prime at the end of the gap. There is no rigorous proof of this formula. The O(log^4(p)) growth rate is suggested by numerical data and heuristics based on probability considerations.
%e The gap of 6 between triples starting at p=7 and p=13 is the very first gap, so a(1)=6. The gap of 24 between triples starting at p=13 and p=37 is a maximal gap  larger than any preceding gap; therefore a(2)=24. The gap of 30 between triples at p=37 and p=67 is again a maximal gap, so a(3)=30. The next gap is smaller, so it does not contribute to the sequence.
%Y Cf. A022005 (prime triples p, p+4, p+6), A113274, A113404, A200503, A201598, A201062, A201073, A201051, A201251, A202281, A202361, A201597, A233435.
%K nonn
%O 1,1
%A _Alexei Kourbatov_, Dec 03 2011
