login
A201525
Decimal expansion of least x satisfying 8*x^2 - 1 = sec(x) and 0 < x < Pi.
3
5, 1, 8, 5, 7, 7, 0, 0, 2, 2, 0, 1, 7, 1, 1, 4, 5, 8, 2, 5, 3, 1, 0, 9, 8, 2, 0, 4, 1, 7, 2, 4, 4, 9, 9, 4, 8, 3, 1, 0, 4, 3, 3, 3, 7, 0, 3, 4, 8, 6, 2, 9, 7, 2, 7, 1, 9, 3, 3, 8, 9, 8, 0, 8, 1, 5, 4, 5, 0, 6, 9, 7, 3, 1, 1, 0, 2, 9, 7, 7, 7, 1, 8, 4, 3, 4, 8, 1, 3, 2, 6, 4, 1, 2, 8, 0, 7, 3, 0
OFFSET
0,1
COMMENTS
See A201397 for a guide to related sequences. The Mathematica program includes a graph.
EXAMPLE
least: 0.518577002201711458253109820417244...
greatest: 1.5130057374477490977746930540120...
MATHEMATICA
a = 8; c = -1;
f[x_] := a*x^2 + c; g[x_] := Sec[x]
Plot[{f[x], g[x]}, {x, 0, Pi/2}, {AxesOrigin -> {0, 0}}]
r = x /. FindRoot[f[x] == g[x], {x, .5, .6}, WorkingPrecision -> 110]
RealDigits[r] (* A201525 *)
r = x /. FindRoot[f[x] == g[x], {x, 1.5, 1.6}, WorkingPrecision -> 110]
RealDigits[r] (* A201526 *)
CROSSREFS
Cf. A201397.
Sequence in context: A347131 A350515 A073116 * A269229 A193089 A154310
KEYWORD
nonn,cons
AUTHOR
Clark Kimberling, Dec 02 2011
STATUS
approved