login
Decimal expansion of least x satisfying 4*x^2 - 1 = sec(x) and 0 < x < Pi.
3

%I #9 Apr 10 2021 02:03:20

%S 7,7,4,4,2,7,2,5,7,0,7,9,8,9,3,6,2,3,2,5,7,0,2,9,0,0,9,0,0,0,6,2,4,5,

%T 6,3,9,8,5,9,1,3,6,7,7,8,3,5,0,7,9,2,6,8,7,8,4,2,5,9,1,6,0,5,0,5,9,2,

%U 7,3,0,3,6,8,2,5,8,1,2,4,6,4,8,7,2,7,2,4,4,6,5,7,4,2,9,1,6,4,1

%N Decimal expansion of least x satisfying 4*x^2 - 1 = sec(x) and 0 < x < Pi.

%C See A201397 for a guide to related sequences. The Mathematica program includes a graph.

%e least: 0.774427257079893623257029009000...

%e greatest: 1.4313635500690391357640449937...

%t a = 4; c = -1;

%t f[x_] := a*x^2 + c; g[x_] := Sec[x]

%t Plot[{f[x], g[x]}, {x, 0, Pi/2}, {AxesOrigin -> {0, 0}}]

%t r = x /. FindRoot[f[x] == g[x], {x, .7, .8}, WorkingPrecision -> 110]

%t RealDigits[r] (* A201517 *)

%t r = x /. FindRoot[f[x] == g[x], {x, 1.4, 1.5}, WorkingPrecision -> 110]

%t RealDigits[r] (* A201518 *)

%Y Cf. A201397.

%K nonn,cons

%O 0,1

%A _Clark Kimberling_, Dec 02 2011