%I #14 Mar 30 2012 16:52:07
%S 5,6,7,8,10,11,12,13,15,16,17,18,20,21,22,23,26,27,28,29,31,32,33,34,
%T 36,37,38,39,41,42,43,44,47,48,49,50,52,53,54,55,57,58,59,60,62,63,64,
%U 65,68,69,70,71,73,74,75,76,78,79,80,81,83,84,85,86,90,91,92,93,95,96,97,98,100,101,102,103,105,106,107,108,111,112,113,114,116,117,118,119,121,122,123,124,126,127,128,129,132,133,134,135
%N The Griesmer lower bound q_4(5,n) on the length of a linear code over GF(4) of dimension 5 and minimal distance n.
%D Bouyukliev, Iliya; Grassl, Markus; and Varbanov, Zlatko; New bounds for n_4(k,d) and classification of some optimal codes over GF(4). Discrete Math. 281 (2004), no. 1-3, 43-66.
%D F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting Codes, Elsevier/North Holland, 1977, Chap. 17, Section 5.
%F The Griesmer bound for codes over GF(q) is g_q(k,d) = Sum_{i=0..k-1} ceiling(d/q^i), where k is the dimension and d is the minimal distance.
%p g:=(q,k,d)->add( ceil(d/q^i), i=0..k-1);
%p s:=(q,k)->[seq(g(q,k,d),d=1..100)];
%p s(4,5);
%Y Cf. A201512.
%K nonn
%O 1,1
%A _N. J. A. Sloane_, Dec 02 2011