%I #9 Nov 07 2021 13:28:35
%S 3,4,6,7,9,11,15,17,19,21,23,25,27,29,31,33,35,37,39,41,43,45,47,49,
%T 51,53,55,57,59,61,63,65,67,69,71,73,75,77,79,81,83,85,87,89,91,93,95,
%U 97,99,101,103,105,107,109,111,113,115,117,119,121,123,125,127,129,131,133,135,137,139,141,143,145,147,149,151,153,155,157
%N Maximal diameter of a connected n-gamma_t-vertex-critical graph.
%D Henning, Michael A., A survey of selected recent results on total domination in graphs. Discrete Math. 309 (2009), no. 1, 32-63.
%H Colin Barker, <a href="/A201471/b201471.txt">Table of n, a(n) for n = 3..1000</a>
%H <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (2,-1).
%F For n >= 9, a(n) = 2n-3.
%F G.f.: x^3*(3 - 2*x + x^2 - x^3 + x^4 + 2*x^6 - 2*x^7) / (1 - x)^2. - _Colin Barker_, Dec 25 2019
%t LinearRecurrence[{2,-1},{3,4,6,7,9,11,15,17},80] (* _Harvey P. Dale_, Nov 07 2021 *)
%o (PARI) Vec(x^3*(3 - 2*x + x^2 - x^3 + x^4 + 2*x^6 - 2*x^7) / (1 - x)^2 + O(x^70)) \\ _Colin Barker_, Dec 25 2019
%K nonn,easy
%O 3,1
%A _N. J. A. Sloane_, Dec 01 2011