The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A201470 E.g.f. satisfies: A(x) = 1/(1 - 2*x*exp(x*A(x))). 0
 1, 2, 12, 126, 1928, 39050, 987852, 30028670, 1067161104, 43439950098, 1993658601620, 101873148358982, 5736946141694616, 353052289411248986, 23574446170669354716, 1697657229173802582030, 131156091046113794979872, 10821153944570302041170978, 949646768024669592457251108 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 LINKS FORMULA E.g.f.: A(x) = 1 + 2*x*A(x)*exp(x*A(x)). E.g.f.: A(x) = (1/x)*Series_Reversion[x/(1 + 2*x*exp(x))]. a(n) = [x^n/n!] (1 + 2*x*exp(x))^(n+1)/(n+1). a(n) = n!*Sum_{k=0..n} 2^k * C(n+1,k)/(n+1) * k^(n-k)/(n-k)!. Let A(x)^m = Sum_{n>=0} a(n,m)*x^n/n! then a(n,m) = n!*Sum_{k=0..n} 2^k * C(n+m,k)*m/(n+m) * k^(n-k)/(n-k)!. a(n) ~ s/sqrt(2*s-1) * n^(n-1) * ((s-1)*s)^(n+1/2) / exp(n), where s = 2.8524169182445218... is the root of the equation (s-1)*LambertW((s-1)/2) = 1. - Vaclav Kotesovec, Jan 12 2014 EXAMPLE E.g.f.: A(x) = 1 + 2*x + 12*x^2/2! + 126*x^3/3! + 1928*x^4/4! + 39050*x^5/5! +... The exponential of the e.g.f. begins: exp(x*A(x)) = 1 + x + 5*x^2/2! + 49*x^3/3! + 721*x^4/4! + 14241*x^5/5! +... The coefficients of x^n/n! in the powers of G(x) = 1 + 2*x*exp(x) begin: G^1: [(1), 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, ...]; G^2: [1,(4), 16, 60, 208, 660, 1944, 5404, 14368, 36900 ...]; G^3: [1, 6,(36), 210, 1176, 6270, 31716, 152250, 696240, ...]; G^4: [1, 8, 64, (504), 3872, 28840, 207408, 1436792, ...]; G^5: [1, 10, 100, 990, (9640), 91890, 854460, 7731430, ...]; G^6: [1, 12, 144, 1716, 20208,(234300), 2666952, 29736084, ...]; G^7: [1, 14, 196, 2730, 37688, 514150, (6914964), 91510034, ...]; G^8: [1, 16, 256, 4080, 64576, 1012560, 15698016,(240229360), ...]; ... where the coefficients in parenthesis form initial terms of this sequence: [1/1, 4/2, 36/3, 504/4, 9640/5, 234300/6, 6914964/7, 240229360/8, ...]. MATHEMATICA CoefficientList[1/x*InverseSeries[Series[x/(1 + 2*x*Exp[x]), {x, 0, 21}], x], x] * Range[0, 20]! (* Vaclav Kotesovec, Jan 12 2014 *) PROG (PARI) a(n, m=1)=n!*sum(k=0, n, 2^k*binomial(n+m, k)*m/(n+m)*k^(n-k)/(n-k)!) CROSSREFS Cf. A161633. Sequence in context: A035351 A209627 A253282 * A349268 A003712 A143136 Adjacent sequences: A201467 A201468 A201469 * A201471 A201472 A201473 KEYWORD nonn AUTHOR Paul D. Hanna, Dec 01 2011 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 30 15:41 EST 2023. Contains 359945 sequences. (Running on oeis4.)