This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A201455 a(n) = 3*a(n-1) + 4*a(n-2) for n>1, a(0)=2, a(1)=3. 5
 2, 3, 17, 63, 257, 1023, 4097, 16383, 65537, 262143, 1048577, 4194303, 16777217, 67108863, 268435457, 1073741823, 4294967297, 17179869183, 68719476737, 274877906943, 1099511627777, 4398046511103, 17592186044417, 70368744177663, 281474976710657 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,1 COMMENTS This is the Lucas sequence V(3,-4). Inverse binomial transform of this sequence is A087451. LINKS Bruno Berselli, Table of n, a(n) for n = 0..200 Wikipedia, Lucas sequence: Specific names. Index entries for linear recurrences with constant coefficients, signature (3,4). FORMULA G.f.: (2-3*x)/((1+x)*(1-4*x)). a(n) = 4^n+(-1)^n. a(n) = A086341(A047524(n)) for n>0, a(0)=2. a(n) = [x^n] ( (1 + 3*x + sqrt(1 + 6*x + 25*x^2))/2 )^n for n >= 1. - Peter Bala, Jun 23 2015 MATHEMATICA RecurrenceTable[{a[n] == 3 a[n - 1] + 4 a[n - 2], a[0] == 2, a[1] == 3}, a[n], {n, 25}] PROG (MAGMA) [n le 1 select n+2 else 3*Self(n)+4*Self(n-1): n in [0..25]]; (Maxima) a[0]:2\$ a[1]:3\$ a[n]:=3*a[n-1]+4*a[n-2]\$ makelist(a[n], n, 0, 25); (PARI) Vec((2-3*x)/((1+x)*(1-4*x)) + O(x^30)) \\ Michel Marcus, Jun 26 2015 CROSSREFS Cf. for the same recurrence with initial values (i,i+1): A015521 (Lucas sequence U(3,-4); i=0), A122117 (i=1), A189738 (i=3). Cf. for similar closed form: A014551 (2^n+(-1)^n), A102345 (3^n+(-1)^n), A087404 (5^n+(-1)^n). Cf. A052539, A024036. Sequence in context: A042699 A078983 A235617 * A085874 A055739 A220703 Adjacent sequences:  A201452 A201453 A201454 * A201456 A201457 A201458 KEYWORD nonn,easy AUTHOR Bruno Berselli, Jan 09 2013 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.