login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Today, Nov 11 2014, is the 4th anniversary of the launch of the new OEIS web site. 70,000 sequences have been added in these four years, all edited by volunteers. Please make a donation (tax deductible in the US) to help keep the OEIS running.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A201455 a(n) = 3*a(n-1) + 4*a(n-2) for n>1, a(0)=2, a(1)=3. 4
2, 3, 17, 63, 257, 1023, 4097, 16383, 65537, 262143, 1048577, 4194303, 16777217, 67108863, 268435457, 1073741823, 4294967297, 17179869183, 68719476737, 274877906943, 1099511627777, 4398046511103, 17592186044417, 70368744177663, 281474976710657 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,1

COMMENTS

This is the Lucas sequence V(3,-4).

Inverse binomial transform of this sequence is A087451.

LINKS

Bruno Berselli, Table of n, a(n) for n = 0..200

Wikipedia, Lucas sequence: Specific names.

Index to sequences with linear recurrences with constant coefficients, signature (3,4).

FORMULA

G.f.: (2-3*x)/((1+x)*(1-4*x)).

a(n) = 4^n+(-1)^n.

a(n) = A086341(A047524(n)) for n>0, a(0)=2.

MATHEMATICA

RecurrenceTable[{a[n] == 3 a[n - 1] + 4 a[n - 2], a[0] == 2, a[1] == 3}, a[n], {n, 25}]

PROG

(MAGMA) [n le 1 select n+2 else 3*Self(n)+4*Self(n-1): n in [0..25]];

(Maxima) a[0]:2$ a[1]:3$ a[n]:=3*a[n-1]+4*a[n-2]$ makelist(a[n], n, 0, 25);

CROSSREFS

Cf. for the same recurrence with initial values (i,i+1): A015521 (Lucas sequence U(3,-4); i=0), A122117 (i=1), A189738 (i=3).

Cf. for similar closed form: A014551 (2^n+(-1)^n), A102345 (3^n+(-1)^n), A087404 (5^n+(-1)^n).

Cf. A052539, A024036.

Sequence in context: A042699 A078983 A235617 * A085874 A055739 A220703

Adjacent sequences:  A201452 A201453 A201454 * A201456 A201457 A201458

KEYWORD

nonn,easy

AUTHOR

Bruno Berselli, Jan 09 2013

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .

Last modified December 18 14:15 EST 2014. Contains 252161 sequences.