This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A201445 Number of nX2 0..3 arrays with every row and column nondecreasing rightwards and downwards, and the number of instances of each value within one of each other 1
 6, 2, 21, 9, 56, 13, 110, 32, 198, 41, 315, 78, 480, 94, 684, 155, 950, 180, 1265, 271, 1656, 307, 2106, 434, 2646, 483, 3255, 652, 3968, 716, 4760, 933, 5670, 1014, 6669, 1285, 7800, 1385, 9030, 1716, 10406, 1837, 11891, 2234, 13536, 2378, 15300, 2847 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS Column 2 of A201451 LINKS R. H. Hardin, Table of n, a(n) for n = 1..210 FORMULA Empirical: a(n) = a(n-2) +3*a(n-4) -3*a(n-6) -3*a(n-8) +3*a(n-10) +a(n-12) -a(n-14) Subsequences for n modulo 4 = 1,2,3,0 p=(n+3)/4: a(n) = 8*p^3 - 2*p^2 q=(n+2)/4: a(n) = (4/3)*q^3 + (1/2)*q^2 + (1/6)*q r=(n+1)/4: a(n) = 8*r^3 + 10*r^2 + 3*r s=(n+0)/4: a(n) = (4/3)*s^3 + (7/2)*s^2 + (19/6)*s + 1 EXAMPLE Some solutions for n=10 ..0..0....0..0....0..1....0..1....0..2....0..0....0..0....0..0....0..1....0..0 ..0..1....0..1....0..1....0..1....0..2....0..1....0..1....0..0....0..1....0..1 ..0..2....0..1....0..2....0..2....0..2....0..1....0..2....0..1....0..1....0..2 ..0..2....0..2....0..2....0..2....0..2....0..1....0..2....1..1....0..2....0..2 ..1..2....1..2....0..2....0..2....0..2....1..1....1..2....1..1....0..2....1..2 ..1..2....1..2....1..2....1..3....1..3....2..2....1..3....2..2....1..2....1..2 ..1..2....1..2....1..2....1..3....1..3....2..3....1..3....2..3....1..3....1..3 ..1..3....2..3....1..3....1..3....1..3....2..3....1..3....2..3....2..3....1..3 ..3..3....3..3....3..3....2..3....1..3....2..3....2..3....2..3....2..3....2..3 ..3..3....3..3....3..3....2..3....1..3....3..3....2..3....3..3....3..3....3..3 CROSSREFS Sequence in context: A055943 A213503 A169632 * A090033 A036173 A142707 Adjacent sequences:  A201442 A201443 A201444 * A201446 A201447 A201448 KEYWORD nonn AUTHOR R. H. Hardin Dec 01 2011 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Puzzles | Hot | Classics
Recent Additions | More pages | Superseeker | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .