login
A201423
Decimal expansion of greatest x satisfying 10*x^2 = sec(x) and 0 < x < Pi.
3
1, 5, 2, 7, 9, 4, 9, 8, 9, 4, 6, 9, 8, 6, 1, 4, 4, 1, 9, 6, 4, 9, 2, 4, 4, 7, 5, 2, 4, 6, 8, 0, 1, 9, 8, 4, 7, 4, 3, 0, 5, 4, 9, 8, 4, 6, 9, 8, 8, 5, 8, 3, 4, 6, 0, 2, 2, 7, 6, 4, 3, 7, 4, 6, 8, 8, 0, 0, 1, 0, 6, 3, 7, 2, 5, 6, 8, 1, 3, 5, 5, 6, 2, 2, 9, 3, 9, 5, 4, 0, 8, 6, 8, 8, 8, 6, 0, 4, 2, 5
OFFSET
1,2
COMMENTS
See A201397 for a guide to related sequences. The Mathematica program includes a graph.
EXAMPLE
least: 0.3248357625526726343272168905918357...
greatest: 1.52794989469861441964924475246801...
MATHEMATICA
a = 10; c = 0;
f[x_] := a*x^2 + c; g[x_] := Sec[x]
Plot[{f[x], g[x]}, {x, 0, Pi/2}, {AxesOrigin -> {0, 0}}]
r = x /. FindRoot[f[x] == g[x], {x, .3, .4}, WorkingPrecision -> 110]
RealDigits[r] (* A201422 *)
r = x /. FindRoot[f[x] == g[x], {x, 1.5, 1.6}, WorkingPrecision -> 110]
RealDigits[r] (* A201423 *)
CROSSREFS
Cf. A201397.
Sequence in context: A074454 A256110 A267211 * A155790 A200646 A198130
KEYWORD
nonn,cons
AUTHOR
Clark Kimberling, Dec 02 2011
STATUS
approved