login
A201422
Decimal expansion of least x satisfying 10*x^2 = sec(x) and 0 < x < Pi.
3
3, 2, 4, 8, 3, 5, 7, 6, 2, 5, 5, 2, 6, 7, 2, 6, 3, 4, 3, 2, 7, 2, 1, 6, 8, 9, 0, 5, 9, 1, 8, 3, 5, 7, 0, 3, 0, 0, 8, 4, 8, 6, 6, 5, 9, 6, 3, 0, 4, 6, 3, 6, 6, 2, 0, 1, 2, 2, 0, 0, 8, 0, 9, 3, 4, 7, 0, 4, 7, 3, 0, 6, 0, 5, 4, 5, 6, 0, 1, 9, 8, 7, 1, 0, 1, 7, 2, 5, 7, 1, 5, 1, 3, 9, 3, 5, 8, 7, 8
OFFSET
0,1
COMMENTS
See A201397 for a guide to related sequences. The Mathematica program includes a graph.
EXAMPLE
least: 0.3248357625526726343272168905918357...
greatest: 1.52794989469861441964924475246801...
MATHEMATICA
a = 10; c = 0;
f[x_] := a*x^2 + c; g[x_] := Sec[x]
Plot[{f[x], g[x]}, {x, 0, Pi/2}, {AxesOrigin -> {0, 0}}]
r = x /. FindRoot[f[x] == g[x], {x, .3, .4}, WorkingPrecision -> 110]
RealDigits[r] (* A201422 *)
r = x /. FindRoot[f[x] == g[x], {x, 1.5, 1.6}, WorkingPrecision -> 110]
RealDigits[r] (* A201423 *)
CROSSREFS
Cf. A201397.
Sequence in context: A229976 A084695 A317704 * A231330 A254051 A082228
KEYWORD
nonn,cons
AUTHOR
Clark Kimberling, Dec 02 2011
STATUS
approved