login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A201415 Decimal expansion of greatest x satisfying 6*x^2=sec(x) and 0<x<pi. 3
1, 4, 9, 6, 2, 8, 5, 0, 4, 8, 6, 0, 7, 6, 5, 2, 9, 5, 3, 4, 7, 9, 2, 2, 9, 0, 4, 1, 7, 1, 2, 4, 2, 4, 4, 6, 9, 7, 5, 1, 2, 6, 6, 2, 6, 7, 9, 8, 7, 7, 1, 8, 2, 6, 4, 4, 9, 4, 1, 4, 8, 6, 8, 8, 7, 0, 5, 6, 1, 9, 9, 3, 2, 4, 9, 0, 6, 9, 7, 4, 6, 1, 6, 1, 7, 7, 7, 6, 8, 9, 8, 5, 8, 6, 6, 4, 9, 0, 8 (list; constant; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

See A201397 for a guide to related sequences.  The Mathematica program includes a graph.

LINKS

Table of n, a(n) for n=1..99.

EXAMPLE

least:  0.42800895010041097002739347769069180659...

greatest: 1.496285048607652953479229041712424469...

MATHEMATICA

a = 6; c = 0;

f[x_] := a*x^2 + c; g[x_] := Sec[x]

Plot[{f[x], g[x]}, {x, 0, Pi/2}, {AxesOrigin -> {0, 0}}]

r = x /. FindRoot[f[x] == g[x], {x, .4, .5}, WorkingPrecision -> 110]

RealDigits[r]    (* A201414 *)

r = x /. FindRoot[f[x] == g[x], {x, 1.4, 1.5}, WorkingPrecision -> 110]

RealDigits[r]    (* A201415 *)

CROSSREFS

Cf. A201397.

Sequence in context: A238557 A271181 A245299 * A094090 A200632 A186723

Adjacent sequences:  A201412 A201413 A201414 * A201416 A201417 A201418

KEYWORD

nonn,cons

AUTHOR

Clark Kimberling, Dec 01 2011

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified February 27 13:18 EST 2020. Contains 332306 sequences. (Running on oeis4.)