login
A201414
Decimal expansion of least x satisfying 6*x^2 = sec(x) and 0 < x < Pi.
3
4, 2, 8, 0, 0, 8, 9, 5, 0, 1, 0, 0, 4, 1, 0, 9, 7, 0, 0, 2, 7, 3, 9, 3, 4, 7, 7, 6, 9, 0, 6, 9, 1, 8, 0, 6, 5, 9, 8, 8, 9, 2, 9, 5, 9, 2, 8, 9, 4, 0, 5, 9, 6, 1, 9, 0, 8, 4, 8, 8, 6, 2, 3, 6, 8, 0, 3, 1, 4, 0, 1, 3, 7, 6, 6, 8, 3, 2, 6, 6, 7, 1, 4, 7, 2, 0, 8, 4, 8, 5, 8, 1, 4, 7, 9, 9, 9, 8, 5
OFFSET
0,1
COMMENTS
See A201397 for a guide to related sequences. The Mathematica program includes a graph.
EXAMPLE
least: 0.42800895010041097002739347769069180659...
greatest: 1.496285048607652953479229041712424469...
MATHEMATICA
a = 6; c = 0;
f[x_] := a*x^2 + c; g[x_] := Sec[x]
Plot[{f[x], g[x]}, {x, 0, Pi/2}, {AxesOrigin -> {0, 0}}]
r = x /. FindRoot[f[x] == g[x], {x, .4, .5}, WorkingPrecision -> 110]
RealDigits[r] (* A201414 *)
r = x /. FindRoot[f[x] == g[x], {x, 1.4, 1.5}, WorkingPrecision -> 110]
RealDigits[r] (* A201415 *)
CROSSREFS
Cf. A201397.
Sequence in context: A348873 A128333 A375447 * A199814 A195347 A200693
KEYWORD
nonn,cons
AUTHOR
Clark Kimberling, Dec 01 2011
STATUS
approved