login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A201408 Decimal expansion of least x satisfying 3*x^2=sec(x) and 0<x<pi. 3
6, 4, 6, 1, 3, 7, 4, 5, 4, 0, 6, 2, 8, 9, 7, 2, 9, 7, 2, 9, 0, 1, 6, 7, 9, 1, 5, 9, 1, 0, 1, 1, 2, 5, 2, 2, 6, 9, 5, 2, 8, 5, 9, 6, 3, 3, 4, 5, 9, 2, 3, 2, 0, 0, 9, 7, 0, 9, 4, 5, 7, 1, 1, 4, 2, 5, 7, 7, 6, 9, 1, 3, 5, 1, 6, 4, 1, 3, 0, 4, 9, 6, 1, 4, 6, 0, 3, 0, 6, 0, 9, 0, 3, 4, 7, 3, 2, 1, 7 (list; constant; graph; refs; listen; history; text; internal format)
OFFSET

0,1

COMMENTS

See A201397 for a guide to related sequences.  The Mathematica program includes a graph.

LINKS

Table of n, a(n) for n=0..98.

EXAMPLE

least:  0.6461374540628972972901679159101125226952859...

greatest: 1.39986411944606406722963950518361037394178...

MATHEMATICA

a = 3; c = 0;

f[x_] := a*x^2 + c; g[x_] := Sec[x]

Plot[{f[x], g[x]}, {x, 0, Pi/2}, {AxesOrigin -> {0, 0}}]

r = x /. FindRoot[f[x] == g[x], {x, .6, .7}, WorkingPrecision -> 110]

RealDigits[r]    (* A201408 *)

r = x /. FindRoot[f[x] == g[x], {x, 1.3, 1.4}, WorkingPrecision -> 110]

RealDigits[r]    (* A201409 *)

CROSSREFS

Cf. A201397.

Sequence in context: A177159 A317866 A309977 * A153606 A086057 A254307

Adjacent sequences:  A201405 A201406 A201407 * A201409 A201410 A201411

KEYWORD

nonn,cons

AUTHOR

Clark Kimberling, Dec 01 2011

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 16 08:53 EDT 2019. Contains 327092 sequences. (Running on oeis4.)