login
A201321
Decimal expansion of x satisfying 3*x^2 - 1 = cot(x) and 0 < x < Pi.
2
8, 0, 7, 5, 8, 5, 2, 8, 1, 4, 4, 2, 2, 0, 1, 9, 9, 3, 9, 2, 6, 5, 8, 1, 6, 7, 9, 5, 3, 7, 2, 4, 0, 7, 5, 4, 2, 3, 7, 2, 5, 4, 0, 7, 9, 4, 3, 0, 3, 7, 3, 1, 8, 9, 3, 2, 9, 3, 4, 6, 3, 8, 9, 5, 5, 0, 1, 6, 9, 8, 7, 0, 9, 9, 8, 9, 7, 1, 7, 7, 8, 2, 9, 3, 7, 3, 8, 9, 2, 5, 6, 5, 5, 3, 0, 3, 7, 2, 0
OFFSET
0,1
COMMENTS
See A201280 for a guide to related sequences. The Mathematica program includes a graph.
EXAMPLE
x=0.807585281442201993926581679537240754...
MATHEMATICA
a = 3; c = -1;
f[x_] := a*x^2 + c; g[x_] := Cot[x]
Plot[{f[x], g[x]}, {x, 0, Pi/2}, {AxesOrigin -> {0, 0}}]
r = x /. FindRoot[f[x] == g[x], {x, .8, .9}, WorkingPrecision -> 110]
RealDigits[r] (* A201321 *)
CROSSREFS
Cf. A201280.
Sequence in context: A261613 A165268 A306071 * A245737 A198221 A183001
KEYWORD
nonn,cons
AUTHOR
Clark Kimberling, Nov 30 2011
STATUS
approved