

A201291


Decimal expansion of x satisfying 2*x^2+3=cot(x) and 0<x<pi.


2



3, 0, 4, 2, 1, 6, 5, 4, 8, 8, 1, 1, 0, 0, 8, 6, 7, 8, 2, 1, 0, 7, 5, 6, 9, 6, 3, 3, 0, 1, 3, 9, 7, 8, 2, 6, 7, 2, 6, 1, 3, 0, 8, 9, 8, 1, 6, 7, 7, 5, 6, 9, 8, 4, 1, 2, 4, 0, 5, 7, 0, 6, 8, 0, 3, 1, 8, 4, 0, 7, 9, 3, 8, 5, 8, 9, 5, 5, 7, 5, 0, 7, 3, 1, 6, 0, 9, 1, 8, 6, 6, 9, 7, 8, 1, 2, 9, 2, 8
(list;
constant;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,1


COMMENTS

See A201280 for a guide to related sequences. The Mathematica program includes a graph.


LINKS

Table of n, a(n) for n=0..98.


EXAMPLE

x=0.304216548811008678210756963301397826726130...


MATHEMATICA

a = 2; c = 3;
f[x_] := a*x^2 + c; g[x_] := Cot[x]
Plot[{f[x], g[x]}, {x, 0, Pi/2}, {AxesOrigin > {0, 0}}]
r = x /. FindRoot[f[x] == g[x], {x, .3, .4}, WorkingPrecision > 110]
RealDigits[r] (* A201291 *)


CROSSREFS

Cf. A201280.
Sequence in context: A131486 A127445 A081170 * A077150 A065453 A152770
Adjacent sequences: A201288 A201289 A201290 * A201292 A201293 A201294


KEYWORD

nonn,cons


AUTHOR

Clark Kimberling, Nov 29 2011


STATUS

approved



