login
A201095
Number of nX2 0..7 arrays with every row and column nondecreasing rightwards and downwards, and the number of instances of each value within one of each other
1
28, 140, 140, 14, 728, 3696, 3273, 323, 10516, 37590, 22872, 1288, 52828, 199384, 125466, 8034, 251361, 795924, 417829, 19994, 734712, 2454383, 1348173, 72589, 2214440, 6602880, 3229480, 143081, 4945844, 15462250, 7894324, 387000, 11616040
OFFSET
1,1
COMMENTS
Column 2 of A201101
LINKS
FORMULA
Subsequences for n modulo 8 = 1,2,3,4,5,6,7,0
p=(n+7)/8: a(n) = (9664/45)*p^7 - (3831/10)*p^6 + (10235/36)*p^5 - (641/6)*p^4 + (3679/180)*p^3 - (47/30)*p^2
q=(n+6)/8: a(n) = (4832/9)*q^7 - (3523/6)*q^6 + (7607/36)*q^5 - (109/6)*q^4 - (115/36)*q^3 + (1/3)*q^2
r=(n+5)/8: a(n) = (9664/45)*r^7 - (6197/90)*r^6 - (259/36)*r^5 + (23/18)*r^4 - (11/180)*r^3 + (7/90)*r^2
s=(n+4)/8: a(n) = (2416/315)*s^7 + (172/45)*s^6 + (14/9)*s^5 + (43/72)*s^4 + (43/180)*s^3 + (29/360)*s^2 + (1/28)*s
t=(n+3)/8: a(n) = (9664/45)*t^7 + (9209/30)*t^6 + (27949/180)*t^5 + (81/2)*t^4 + (1579/180)*t^3 + (23/15)*t^2 + (1/5)*t
u=(n+2)/8: a(n) = (4832/9)*u^7 + (23255/18)*u^6 + (43211/36)*u^5 + (19297/36)*u^4 + (4229/36)*u^3 + (451/36)*u^2 + (5/6)*u
v=(n+1)/8: a(n) = (9664/45)*v^7 + (22331/30)*v^6 + (38495/36)*v^5 + (2443/3)*v^4 + (62269/180)*v^3 + (773/10)*v^2 + 7*v
w=(n+0)/8: a(n) = (2416/315)*w^7 + (3353/90)*w^6 + (14089/180)*w^5 + (6679/72)*w^4 + (3037/45)*w^3 + (10973/360)*w^2 + (3389/420)*w + 1
EXAMPLE
Some solutions for n=10
..0..1....0..1....0..0....0..1....0..2....0..3....0..1....0..1....0..0....0..1
..0..2....0..1....0..2....0..2....0..3....0..3....0..2....0..2....0..2....0..2
..0..2....0..2....1..3....1..3....1..4....0..4....0..2....0..2....1..2....1..2
..1..5....2..4....1..3....2..4....1..4....1..4....1..4....1..3....1..3....1..3
..3..5....3..5....2..4....3..4....2..4....1..5....2..5....2..3....1..4....2..4
..3..6....3..5....2..4....3..5....2..5....2..5....3..6....4..5....3..5....3..4
..3..6....3..6....4..6....4..5....3..6....2..6....3..6....4..5....4..6....4..6
..4..7....4..6....5..6....5..6....3..7....3..6....4..7....4..6....5..7....5..6
..4..7....4..7....5..7....6..7....5..7....4..7....4..7....6..7....5..7....5..6
..4..7....6..7....7..7....6..7....6..7....6..7....5..7....7..7....6..7....7..7
CROSSREFS
Sequence in context: A014705 A126415 A187047 * A239205 A050973 A095301
KEYWORD
nonn
AUTHOR
R. H. Hardin Nov 26 2011
STATUS
approved