login
Irregular triangle read by rows: number of {0,2,4,6...}-shifted Schroeder paths of length n and area k.
3

%I #18 Jan 03 2024 00:20:45

%S 1,1,1,2,0,1,2,3,3,0,1,2,4,6,7,7,5,0,0,1,2,4,7,11,14,18,20,19,15,8,0,

%T 0,1,2,4,8,12,19,26,35,43,52,57,61,57,46,30,13,0,0,0,1,2,4,8,13,21,32,

%U 45,61,81,101,125,146,167,183,194,191,178,146,103,58,21,0,0,0

%N Irregular triangle read by rows: number of {0,2,4,6...}-shifted Schroeder paths of length n and area k.

%H Brian Drake, <a href="https://doi.org/10.1016/j.disc.2008.11.020">Limits of areas under lattice paths</a>, Discrete Math. 309 (2009), no. 12, 3936-3953.

%e Triangle begins

%e 1

%e 1

%e 1 2 0

%e 1 2 3 3 0

%e 1 2 4 6 7 7 5 0 0

%e 1 2 4 7 11 14 18 20 19 15 8 0 0

%e 1 2 4 8 12 19 26 35 43 52 57 61 57 46 30 13 0 0 0

%e ...

%t max = 8; s0 = Range[2, max, 2];

%t gf = Expand /@ FixedPoint[With[{g = Normal@#}, 1 + q x g (g /. {x :> q^2 x}) + Sum[q^(j^2 - j) x^j Product[g /. {x :> q^(2 i - 2) x}, {i, j}], {j, s0}] + O[x]^max] &, 0];

%t Flatten[Reverse[CoefficientList[#, q]][[;; ;; 2]] & /@ CoefficientList[gf, x]] (* _Andrey Zabolotskiy_, Jan 02 2024 *)

%Y Row sums give A063020. Rows converge to A015128.

%Y Cf. S-shifted Schroeder paths for various S: A201075 {0,1}, A201076 {0,2}, A201080 {0,1,3,5...}, A201159 {0,1,2}.

%K nonn,tabf

%O 0,4

%A _N. J. A. Sloane_, Nov 26 2011

%E Name and rows 3 and 5 corrected and row 7 added by _Andrey Zabolotskiy_, Jan 02 2024