This site is supported by donations to The OEIS Foundation.



Annual Appeal: Please make a donation (tax deductible in USA) to keep the OEIS running. Over 4500 articles have referenced us, often saying "we would not have discovered this result without the OEIS".

(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A201074 Initial primes in prime quintuplets (p, p+2, p+6, p+8, p+12) preceding the maximal gaps in A201073. 3
5, 11, 101, 1481, 22271, 55331, 536441, 661091, 1461401, 1615841, 5527001, 11086841, 35240321, 53266391, 72610121, 92202821, 117458981, 196091171, 636118781, 975348161, 1156096301, 1277816921, 1347962381, 2195593481, 3128295551 (list; graph; refs; listen; history; text; internal format)



Prime quintuplets (p, p+2, p+6, p+8, p+12) are one of the two types of densest permissible constellations of 5 primes. Maximal gaps between quintuplets of this type are listed in A201073; see more comments there.


Hardy, G. H. and Littlewood, J. E. "Some Problems of 'Partitio Numerorum.' III. On the Expression of a Number as a Sum of Primes." Acta Math. 44, 1-70, 1923.


Alexei Kourbatov, Table of n, a(n) for n = 1..64

Tony Forbes, Prime k-tuplets

Alexei Kourbatov, Maximal gaps between prime quintuplets (graphs/data up to 10^15)

Eric W. Weisstein, k-Tuple Conjecture


The initial four gaps of 6, 90, 1380, 14580 (starting at p=5, 11, 101, 1481) form an increasing sequence of records. Therefore a(1)=5, a(2)=11, a(3)=101, and a(4)=1481. The next gap is smaller, so a new term is not added.


Cf. A022006 (prime quintuplets p, p+2, p+6, p+8, p+12), A201073, A233432.

Sequence in context: A088268 A030085 A022006 * A056111 A090160 A062652

Adjacent sequences:  A201071 A201072 A201073 * A201075 A201076 A201077




Alexei Kourbatov, Nov 26 2011



Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .

Last modified November 28 00:24 EST 2015. Contains 264553 sequences.