login
A201009
Numbers m such that the set of distinct prime divisors of m is equal to the set of distinct prime divisors of the arithmetic derivative m'.
1
1, 4, 16, 27, 108, 144, 256, 432, 500, 784, 972, 1323, 1728, 2700, 2916, 3125, 3456, 5292, 8788, 11664, 12500, 13068, 15376, 16875, 19683, 20736, 23328, 25000, 27648, 28125, 31212, 34300, 47916, 54000, 57132, 65536, 72000, 78732, 97556, 102400, 103788, 104544
OFFSET
1,2
COMMENTS
A027748(n,k) = A027748(A003415(n),k) for k=1..A001221(n). - Reinhard Zumkeller, Jan 16 2013
A051674 is a subsequence of this sequence.
LINKS
Paolo P. Lava and Donovan Johnson, Table of n, a(n) for n = 1..500 (first 100 terms from Paolo P. Lava)
EXAMPLE
n = 1728 = 2^6*3^3, n' = 6912 = 2^8*3^3 have the same prime factors 2 and 3.
MAPLE
with(numtheory);
A201009:=proc(q)
local a, b, k, n;
for n from 1 to q do
a:=ifactors(n)[2]; b:=ifactors(n*add(op(2, p)/op(1, p), p=ifactors(n)[2]))[2];
if nops(a)=nops(b) then
if product(a[k][1], k=1..nops(a))=product(b[k][1], k=1..nops(a)) then print(n);
fi; fi; od; end:
A201009(100000); # Paolo P. Lava, Jan 09 2013
PROG
(Haskell)
a201009 = a201009_list
a201009_list = 1 : filter
(\x -> a027748_row x == a027748_row (a003415 x)) [2..]
-- Reinhard Zumkeller, Jan 16 2013
(Python)
from sympy import primefactors, factorint
A201009 = [n for n in range(1, 10**5) if primefactors(n) == primefactors(sum([int(n*e/p) for p, e in factorint(n).items()]) if n > 1 else 0)] # Chai Wah Wu, Aug 21 2014
KEYWORD
nonn
AUTHOR
Paolo P. Lava, Jan 09 2013
STATUS
approved