The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A200965 Triangle T(n,k) = coefficient of x^n in expansion of ((1-sqrt(1-4*x))/((1-x)*2))^k = sum(n>=k, T(n,k) * x^n). 1
 1, 2, 1, 4, 4, 1, 9, 12, 6, 1, 23, 34, 24, 8, 1, 65, 98, 83, 40, 10, 1, 197, 294, 273, 164, 60, 12, 1, 626, 919, 891, 612, 285, 84, 14, 1, 2056, 2974, 2938, 2188, 1195, 454, 112, 16, 1, 6918, 9891, 9846, 7698, 4677, 2118, 679, 144, 18, 1, 23714, 33604, 33549 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS Triangle T(n,k)= 1. Riordan Array (1,(1-sqrt(1-4*x))/((1-x)*2)) without first column. 2. Riordan Array ((1-sqrt(1-4*x))/((1-x)*2*x),(1-sqrt(1-4*x))/((1-x)*2)) numbering triangle (0,0). Convolution triangle of A014137(n). - Philippe Deléham, Jan 23 2014 LINKS FORMULA T(n,k):=k*sum(i=0..n-k, (binomial(i+k-1,k-1)*binomial(2*(n-i)-k-1,n-i-1))/(n-i)). EXAMPLE Triangle: 1, 2, 1, 4, 4, 1, 9, 12, 6, 1, 23, 34, 24, 8, 1, 65, 98, 83, 40, 10, 1, 197, 294, 273, 164, 60, 12, 1 PROG (Maxima) T(n, k):=k*sum((binomial(i+k-1, k-1)*binomial(2*(n-i)-k-1, n-i-1))/(n-i), i, 0, n-k); CROSSREFS Cf. Columns: A014137, A014143 Sequence in context: A209240 A263989 A202710 * A117427 A097761 A200756 Adjacent sequences:  A200962 A200963 A200964 * A200966 A200967 A200968 KEYWORD nonn,tabl AUTHOR Vladimir Kruchinin, Nov 25 2011 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 23 15:43 EDT 2020. Contains 337310 sequences. (Running on oeis4.)