login
Sequence A007924 expressed in decimal.
11

%I #29 Jun 12 2023 09:47:22

%S 0,1,2,4,5,8,9,16,17,18,20,32,33,64,65,66,68,128,129,256,257,258,260,

%T 512,513,514,516,517,520,1024,1025,2048,2049,2050,2052,2053,2056,4096,

%U 4097,4098,4100,8192,8193,16384,16385,16386,16388,32768,32769,32770

%N Sequence A007924 expressed in decimal.

%H Alois P. Heinz, <a href="/A200947/b200947.txt">Table of n, a(n) for n = 0..10000</a>

%H Wikipedia, <a href="http://en.wikipedia.org/wiki/Complete_sequence">"Complete" sequence</a>. [Wikipedia calls a sequence "complete" (sic) if every positive integer is a sum of distinct terms. This name is extremely misleading and should be avoided. - _N. J. A. Sloane_, May 20 2023]

%F a(n) = decimal(A007924(n)).

%F a(n) mod 2 = A121559(n) for n>=1. - _Alois P. Heinz_, Jun 12 2023

%e 8=7+1, hence A007924(8)=10001, so a(8)=17.

%p a:= proc(n) option remember; local m, p, r; m:=n; r:=0;

%p while m>0 do

%p if m=1 then r:=r+1; break fi;

%p p:= prevprime(m+1); m:= m-p;

%p r:= r+2^numtheory[pi](p)

%p od; r

%p end:

%p seq(a(n), n=0..52); # _Alois P. Heinz_, Jun 12 2023

%t cprime[n_Integer] := If[n==0, 1, Prime[n]]; gentable[n_Integer] := (m=n; ptable={}; While[m != 0, (i = 0; While[cprime[i] <= m, i++]; j=0; While[j<i, AppendTo[ptable, 0]; j++]; ptable[[i]]=1; m=m-cprime[i-1])]; ptable); decimal[n_Integer] := (gentable[n]; Sum[2^(k - 1)*ptable[[k]], {k, 1, Length[ptable]}]); Table[decimal[n], {n, 0, 100}]

%Y Cf. A003714, A007895, A007924, A027941, A066352, A121559, A345297.

%K nonn

%O 0,3

%A _Frank M Jackson_, Nov 24 2011

%E Edited by _N. J. A. Sloane_, May 20 2023