login
A200887
Number of 0..n arrays x(0..3) of 4 elements without any interior element greater than both neighbors.
1
12, 51, 144, 325, 636, 1127, 1856, 2889, 4300, 6171, 8592, 11661, 15484, 20175, 25856, 32657, 40716, 50179, 61200, 73941, 88572, 105271, 124224, 145625, 169676, 196587, 226576, 259869, 296700, 337311, 381952, 430881, 484364, 542675, 606096, 674917
OFFSET
1,1
COMMENTS
Row 2 of A200886.
LINKS
FORMULA
Empirical: a(n) = (1/3)*n^4 + (7/3)*n^3 + (14/3)*n^2 + (11/3)*n + 1.
Conjectures from Colin Barker, Oct 16 2017: (Start)
G.f.: x*(12 - 9*x + 9*x^2 - 5*x^3 + x^4) / (1 - x)^5.
a(n) = (1+n)^2 * (3+5*n+n^2) / 3.
a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5) for n>5.
(End)
EXAMPLE
Some solutions for n=3
..3....1....0....0....3....1....3....1....2....2....0....1....3....1....3....2
..2....1....1....0....1....1....1....0....2....3....3....0....3....3....3....0
..1....3....1....2....2....0....3....1....2....3....3....0....2....3....1....2
..1....3....0....3....3....1....3....2....2....3....2....2....2....0....2....2
CROSSREFS
Sequence in context: A268351 A374384 A166776 * A236770 A334695 A115680
KEYWORD
nonn
AUTHOR
R. H. Hardin, Nov 23 2011
STATUS
approved