login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A200838 T(n,k)=Number of 0..k arrays x(0..n+1) of n+2 elements without any two consecutive increases or two consecutive decreases 12
8, 25, 16, 56, 69, 32, 105, 194, 191, 64, 176, 435, 676, 529, 128, 273, 846, 1817, 2356, 1465, 256, 400, 1491, 4108, 7587, 8210, 4057, 512, 561, 2444, 8239, 19930, 31677, 28610, 11235, 1024, 760, 3789, 15128, 45465, 96690, 132263, 99700, 31113, 2048 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

Table starts

....8.....25......56......105.......176........273........400.........561

...16.....69.....194......435.......846.......1491.......2444........3789

...32....191.....676.....1817......4108.......8239......15128.......25953

...64....529....2356.....7587.....19930......45465......93472......177381

..128...1465....8210....31677.....96690.....250913.....577660.....1212729

..256...4057...28610...132263....469116....1384813....3570086.....8291391

..512..11235...99700...552247...2276028....7642875...22063924....56687801

.1024..31113..347434..2305835..11042700...42181611..136360286...387572529

.2048..86161.1210736..9627715..53576350..232803603..842739040..2649819955

.4096.238605.4219166.40199277.259938722.1284861277.5208328180.18116728573

LINKS

R. H. Hardin, Table of n, a(n) for n = 1..9999

FORMULA

Empirical for columns:

k=1: a(n) = 2*a(n-1)

k=2: a(n) = 3*a(n-1) -a(n-2) +a(n-3)

k=3: a(n) = 4*a(n-1) -2*a(n-2) +a(n-3) -a(n-4)

k=4: a(n) = 5*a(n-1) -4*a(n-2) +3*a(n-3) -3*a(n-4) +a(n-5) -a(n-6)

k=5: a(n) = 6*a(n-1) -6*a(n-2) +3*a(n-3) -5*a(n-4) +3*a(n-5) -2*a(n-6) +a(n-7)

k=6: a(n) = 7*a(n-1) -9*a(n-2) +6*a(n-3) -9*a(n-4) +7*a(n-5) -7*a(n-6) +5*a(n-7) -2*a(n-8) +a(n-9)

k=7: a(n) = 8*a(n-1) -12*a(n-2) +6*a(n-3) -10*a(n-4) +12*a(n-5) -11*a(n-6) +11*a(n-7) -6*a(n-8) +3*a(n-9) -a(n-10)

Empirical for rows:

n=1: a(k) = (2/3)*k^3 + 3*k^2 + (10/3)*k + 1

n=2: a(k) = (5/12)*k^4 + (19/6)*k^3 + (79/12)*k^2 + (29/6)*k + 1

n=3: a(k) = (4/15)*k^5 + (17/6)*k^4 + (28/3)*k^3 + (73/6)*k^2 + (32/5)*k + 1

n=4: a(k) = (61/360)*k^6 + (93/40)*k^5 + (779/72)*k^4 + (521/24)*k^3 + (1801/90)*k^2 + (239/30)*k + 1

n=5: a(k) = (34/315)*k^7 + (163/90)*k^6 + (1981/180)*k^5 + (557/18)*k^4 + (7807/180)*k^3 + (1361/45)*k^2 + (333/35)*k + 1

n=6: a(k) = (277/4032)*k^8 + (1375/1008)*k^7 + (4933/480)*k^6 + (2723/72)*k^5 + (14161/192)*k^4 + (11197/144)*k^3 + (216211/5040)*k^2 + (929/84)*k + 1

n=7: a(k) = (124/2835)*k^9 + (1123/1120)*k^8 + (244/27)*k^7 + (1991/48)*k^6 + (57133/540)*k^5 + (74183/480)*k^4 + (291427/2268)*k^3 + (9739/168)*k^2 + (568/45)*k + 1

EXAMPLE

Some solutions for n=4 k=3

..1....2....3....0....1....1....2....1....3....3....3....1....2....0....1....1

..0....0....0....2....1....0....3....3....1....3....0....3....2....3....1....0

..0....0....2....2....0....3....0....0....1....2....1....3....2....0....1....1

..3....0....1....3....3....3....3....2....1....2....0....1....2....0....0....1

..3....3....3....0....3....0....1....2....1....1....3....3....3....2....2....3

..1....3....2....0....1....3....3....2....2....1....0....1....2....1....1....0

CROSSREFS

Column 1 is A000079(n+2)

Column 2 is A098182(n+3)

Row 1 is A131423(n+1)

Sequence in context: A023056 A103954 A217012 * A302160 A122984 A254341

Adjacent sequences:  A200835 A200836 A200837 * A200839 A200840 A200841

KEYWORD

nonn,tabl

AUTHOR

R. H. Hardin Nov 23 2011

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 17 18:24 EST 2019. Contains 329241 sequences. (Running on oeis4.)