This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A200782 Expansion of 1 / (1 - 6*x + 20*x^3 - 15*x^4 + x^6). 3
 1, 6, 36, 196, 1071, 5796, 31395, 169884, 919413, 4975322, 26924106, 145698840, 788446400, 4266656226, 23088902733, 124944995676, 676136621430, 3658895818470, 19800020091895, 107147296401684, 579824822459421, 3137707025200000 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS a(n) is the number of words of length n over an alphabet of size 6 which do not contain any strictly decreasing factor (consecutive subword) of length 3. Equivalently, dimensions of homogeneous components of the universal associative envelope for a certain nonassociative triple system [Bremner]. This is the g.f. corresponding to row 6 of A225682. LINKS R. H. Hardin and N. J. Sloane, Table of n, a(n) for n = 0..239 [The first 210 terms were computed by R. H. Hardin] M. R. Bremner, Free associative algebras, noncommutative Grobner bases, and universal associative envelopes for nonassociative structures, arXiv:1303.0920 [math.RA], 2013 A. Burstein and T. Mansour, Words restricted by 3-letter generalized multipermutation patterns, Annals. Combin., 7 (2003), 1-14. See Th. 3.13. Index entries for linear recurrences with constant coefficients, signature (6,0,-20,15,0,-1). FORMULA G.f.: 1 / (1 - 6*x + 20*x^3 - 15*x^4 + x^6). a(n) = 6*a(n-1) - 20*a(n-3) + 15*a(n-4) - a(n-6). EXAMPLE a(n) is also the number of words of length n over an alphabet of size 6 which do not contain any strictly increasing factor of length 3. Some solutions for n=5: ..5....5....0....3....2....4....3....3....3....3....0....3....3....1....0....1 ..1....5....0....0....4....5....1....1....3....5....1....0....2....0....3....4 ..3....5....1....0....4....3....1....4....5....0....1....5....1....0....0....3 ..0....0....0....4....1....1....1....4....2....4....1....1....2....5....4....1 ..1....4....2....0....0....0....1....3....1....4....3....2....2....2....4....5 MATHEMATICA CoefficientList[Series[1 / (1 - 6*x + 20*x^3 - 15*x^4 + x^6), {x, 0, 20}], x] (* Vaclav Kotesovec, Jan 26 2015 *) PROG (PARI) Vec(1/(1-6*x+20*x^3-15*x^4+x^6) + O(x^30)) \\ Michel Marcus, Jan 26 2015 CROSSREFS Column 5 of A200785. G.f. corresponds to row 6 of A225682. Sequence in context: A215453 A267229 A048980 * A055299 A261520 A232138 Adjacent sequences:  A200779 A200780 A200781 * A200783 A200784 A200785 KEYWORD nonn,easy AUTHOR R. H. Hardin, Nov 22 2011 EXTENSIONS Entry revised by N. J. A. Sloane, May 17 2013, merging this with A225381 Typo in name corrected by Michel Marcus, Jan 26 2015 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified July 16 23:49 EDT 2019. Contains 325092 sequences. (Running on oeis4.)