login
Greatest number such that in the triangle A200737 the first terms in row n coincide with row n+1.
3

%I #8 Jul 13 2013 12:04:19

%S 1,2,4,6,8,11,14,16,20,23,26,31,35,38,43,48,51,57,63,65,72,78,83,89,

%T 94,100,107,113,118,126,133,137,146,153,158,167,175,180,190,197,203,

%U 213,221,227,234,245,253,262,271,276,288,296,304,316,323,329,342,354

%N Greatest number such that in the triangle A200737 the first terms in row n coincide with row n+1.

%C Shorter rows in A200737 are contained in longer rows; a(n) gives length of common initial segments of consecutive rows: A200737(n,k) = A200737(n+1,k) for k <= a(n).

%H Reinhard Zumkeller, <a href="/A200738/b200738.txt">Table of n, a(n) for n = 1..100</a>

%o (Haskell)

%o a200738 n = a200738_list !! (n-1)

%o a200738_list = f a200737_tabl where

%o f (rs:rss'@(rs':rss)) =

%o (length $ takeWhile (== EQ) $ zipWith compare rs rs') : f rss'

%Y Cf. A200742.

%K nonn

%O 1,2

%A _Reinhard Zumkeller_, Nov 21 2011