This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A200737 Table of numbers of the form v*w + w*u + u*v with 1 <= u <= v <= w <= n, with repetitions. 5
 3, 3, 5, 8, 12, 3, 5, 7, 8, 11, 12, 15, 16, 21, 27, 3, 5, 7, 8, 9, 11, 12, 14, 15, 16, 19, 20, 21, 24, 26, 27, 32, 33, 40, 48, 3, 5, 7, 8, 9, 11, 11, 12, 14, 15, 16, 17, 19, 20, 21, 23, 24, 24, 26, 27, 29, 31, 32, 33, 35, 38, 39, 40, 45, 47, 48, 55, 56, 65 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS A000292(n) = number of terms in row n; T(1,1) = 3; right edge: T(n,A000292(n)) = A033428(n); T(n,k) = T(n+1,k) for k <= A200738(n); see table A200741 for distinct terms per row. LINKS Reinhard Zumkeller, Rows n=1..25 of triangle, flattened EXAMPLE First 5 rows: 1: 3; 2: 3,5,8,12; 3: 3,5,7,8,11,12,15,16,21,27; 4: 3,5,7,8,9,11,12,14,15,16,19,20,21,24,26,27,32,33,40,48; 5: 3,5,7,8,9,11,11,12,14,15,16,17,19,20,21,23,24,24,26,27,29,31,... . First terms of 5th row: T(5,1) = 1*1 + 1*1 + 1*1 = 3; T(5,2) = 1*2 + 2*1 + 1*1 = 5; T(5,3) = 1*3 + 3*1 + 1*1 = 7; T(5,4) = 2*2 + 2*1 + 1*2 = 8; T(5,5) = 1*4 + 4*1 + 1*1 = 9; T(5,6) = 1*5 + 5*1 + 1*1 = 11; T(5,7) = 2*3 + 3*1 + 1*2 = 11 = T(5,6); T(5,8) = 2*2 + 2*2 + 2*2 = 12; T(5,9) = 2*4 + 4*1 + 1*2 = 14; T(5,10) = 3*3 + 3*1 + 1*3 = 15; T(5,11) = 2*3 + 3*2 + 2*2 = 16; T(5,12) = 2*5 + 5*1 + 1*2 = 17; ... . PROG (Haskell) import Data.List (sort) a200737 n k = a200737_tabl !! (n-1) !! (k-1) a200737_row n = sort    [v*w + w*u + u*v | w <- [1..n], v <- [1..w], u <- [1..v]] a200737_tabl = map a200737_row [1..] CROSSREFS Sequence in context: A079965 A285069 A262736 * A200741 A271970 A213678 Adjacent sequences:  A200734 A200735 A200736 * A200738 A200739 A200740 KEYWORD nonn,tabf,look AUTHOR Reinhard Zumkeller, Nov 21 2011 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 16 23:58 EDT 2018. Contains 313809 sequences. (Running on oeis4.)