The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A200672 Partial sums of A173862. 4
 1, 2, 3, 5, 7, 9, 13, 17, 21, 29, 37, 45, 61, 77, 93, 125, 157, 189, 253, 317, 381, 509, 637, 765, 1021, 1277, 1533, 2045, 2557, 3069, 4093, 5117, 6141, 8189, 10237, 12285, 16381, 20477, 24573, 32765, 40957, 49149, 65533, 81917, 98301, 131069, 163837, 196605 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS Partial sums of powers of 2 repeated 3 times. LINKS Vincenzo Librandi, Table of n, a(n) for n = 1..1000 Shatalov A. A, The Cupola Algorithm Data And The Modulation-37 The Natural Sciences Aspect And The Using For Analysis Of Ancient Layouts, European Journal Of Natural History, 2007 No. 1, p. 35. Index entries for linear recurrences with constant coefficients, signature (1,0,2,-2). FORMULA G.f.: x*(1+x+x^2) / ( (x-1)*(2*x^3-1) ). - R. J. Mathar, Nov 28 2011 a(3*n) = 3*(2^n-1) = 3*A000225(n). - Philippe Deléham, Mar 13 2013 a(n) = 2*a(n-3) + 3 for n > 3. - Yuchun Ji, Nov 16 2018 EXAMPLE a(4) = 1+1+1+2 = 5. MATHEMATICA CoefficientList[Series[(1 + x + x^2) / ((x - 1) (2 x^3 - 1)), {x, 0, 50}], x] (* Vincenzo Librandi, Nov 16 2018 *) PROG (BASIC) for i=0 to 12 : for j=1 to 3 : s=s+2^i : print s : next j : next i (MAGMA) I:=[1, 2, 3, 5]; [n le 4 select I[n] else Self(n-1) + 2*Self(n-3)- 2*Self(n-4): n in [1..50]]; // Vincenzo Librandi, Nov 16 2018 CROSSREFS Cf. A027383, A173862. Sequence in context: A028870 A057886 A302835 * A332686 A069999 A271661 Adjacent sequences:  A200669 A200670 A200671 * A200673 A200674 A200675 KEYWORD nonn AUTHOR Jeremy Gardiner, Nov 20 2011 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 10 00:05 EDT 2020. Contains 333392 sequences. (Running on oeis4.)