login
A200649
Number of 1's in the Stolarsky representation of n.
10
0, 1, 2, 1, 3, 2, 2, 4, 1, 3, 3, 3, 5, 2, 2, 4, 2, 4, 4, 4, 6, 1, 3, 3, 3, 5, 3, 3, 5, 3, 5, 5, 5, 7, 2, 2, 4, 2, 4, 4, 4, 6, 2, 4, 4, 4, 6, 4, 4, 6, 4, 6, 6, 6, 8, 1, 3, 3, 3, 5, 3, 3, 5, 3, 5, 5, 5, 7, 3, 3, 5, 3, 5, 5, 5, 7, 3, 5, 5, 5, 7, 5, 5, 7, 5, 7, 7
OFFSET
1,3
COMMENTS
For the Stolarsky representation of n, see the C. Mongoven link.
FORMULA
a(n) = a(n - A130312(n-1)) + (A072649(n-1) - A072649(n - A130312(n-1) - 1)) mod 2 for n > 2 with a(1) = 0, a(2) = 1. - Mikhail Kurkov, Oct 19 2021 [verification needed]
a(n) = A200648(n) - A200650(n). - Amiram Eldar, Jul 07 2023
EXAMPLE
The Stolarsky representation of 19 is 11101. This has 4 1's. So a(19) = 4.
MATHEMATICA
stol[n_] := stol[n] = If[n == 1, {}, If[n != Round[Round[n/GoldenRatio]*GoldenRatio], Join[stol[Floor[n/GoldenRatio^2] + 1], {0}], Join[stol[Round[n/GoldenRatio]], {1}]]];
a[n_] := Count[stol[n], 1]; Array[a, 100] (* Amiram Eldar, Jul 07 2023 *)
PROG
(PARI) stol(n) = {my(phi=quadgen(5)); if(n==1, [], if(n != round(round(n/phi)*phi), concat(stol(floor(n/phi^2) + 1), [0]), concat(stol(round(n/phi)), [1]))); }
a(n) = vecsum(stol(n)); \\ Amiram Eldar, Jul 07 2023
CROSSREFS
KEYWORD
nonn,base
AUTHOR
Casey Mongoven, Nov 19 2011
EXTENSIONS
More terms from Amiram Eldar, Jul 07 2023
STATUS
approved