login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A200647 Number of equal bit-runs in Wythoff representation of n. 1
1, 1, 2, 2, 1, 2, 3, 2, 2, 3, 4, 2, 1, 2, 3, 4, 4, 3, 2, 3, 2, 2, 3, 4, 4, 3, 4, 5, 4, 2, 3, 4, 2, 1, 2, 3, 4, 4, 3, 4, 5, 4, 4, 5, 6, 4, 3, 2, 3, 4, 4, 3, 2, 3, 2, 2, 3, 4, 4, 3, 4, 5, 4, 4, 5, 6, 4, 3, 4, 5, 6, 6 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,3

REFERENCES

W. Lang, The Wythoff and the Zeckendorf representations of numbers are equivalent, in G. E. Bergum et al. (edts.) Application of Fibonacci numbers vol. 6, Kluwer, Dordrecht, 1996, pp. 319-337. [See A317208 for a link.]

LINKS

Table of n, a(n) for n=1..72.

Aviezri S. Fraenkel, From Enmity to Amity, American Mathematical Monthly 117 (2010) 646-648.

C. Kimberling, The Zeckendorf array equals the Wythoff array, Fibonacci Quarterly 33 (1995) 3-8.

EXAMPLE

The Wythoff representation of 29 is '10110'. This has 4 equal bit-runs: '1', '0', '11' and '0'. So a(29) = 4.

CROSSREFS

Cf. A135817.

Sequence in context: A090970 A091972 A025833 * A261625 A237284 A294186

Adjacent sequences:  A200644 A200645 A200646 * A200648 A200649 A200650

KEYWORD

nonn

AUTHOR

Casey Mongoven, Nov 19 2011

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified March 20 21:49 EDT 2019. Contains 321352 sequences. (Running on oeis4.)