login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A200634 Decimal expansion of the greater of two values of x satisfying 6*x^2-1=tan(x) and 0<x<pi/2. 3
1, 4, 8, 9, 7, 8, 3, 6, 5, 6, 0, 8, 3, 4, 9, 8, 2, 2, 0, 9, 6, 6, 8, 1, 7, 9, 8, 6, 8, 6, 0, 6, 7, 1, 4, 7, 5, 0, 4, 2, 6, 1, 4, 1, 5, 1, 4, 5, 8, 4, 9, 3, 2, 5, 8, 7, 9, 8, 2, 4, 1, 9, 1, 4, 6, 2, 0, 1, 1, 9, 1, 7, 6, 2, 2, 0, 1, 7, 8, 7, 0, 3, 4, 0, 1, 8, 8, 7, 0, 9, 4, 1, 5, 0, 3, 8, 8, 8, 6 (list; constant; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

See A200614 for a guide to related sequences.  The Mathematica program includes a graph.

LINKS

Table of n, a(n) for n=1..99.

EXAMPLE

lesser:  0.50974170891854848924604966585258686270831...

greater: 1.48978365608349822096681798686067147504261...

MATHEMATICA

a = 6; c = 1;

f[x_] := a*x^2 - c; g[x_] := Tan[x]

Plot[{f[x], g[x]}, {x, -.1, Pi/2}, {AxesOrigin -> {0, 0}}]

r = x /. FindRoot[f[x] == g[x], {x, .5, .6}, WorkingPrecision -> 110]

RealDigits[r]   (* A200633 *)

r = x /. FindRoot[f[x] == g[x], {x, 1.4, 1.5}, WorkingPrecision -> 110]

RealDigits[r]   (* A200634 *)

CROSSREFS

Cf. A200614.

Sequence in context: A194623 A316251 A108616 * A154177 A010480 A087021

Adjacent sequences:  A200631 A200632 A200633 * A200635 A200636 A200637

KEYWORD

nonn,cons

AUTHOR

Clark Kimberling, Nov 20 2011

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 17 06:06 EST 2019. Contains 329217 sequences. (Running on oeis4.)